[1]
A. Bellouquid, and M. Delitala, Modelling Complex Multicellular Systems - A Kinetic Theory Approach, Birkaüser, Boston (2006).
Google Scholar
[2]
C. Perez, and L. Brady, Principles and Practice of Radiation Oncology, Philadelphia, PA: Lippincott-Raven (1998).
Google Scholar
[3]
L. Li, M. Story, R. Legerski, Cellular responses to ionizing radiation damage, Int. J. Radiat. Oncol. Biol. Phys, vol. 49 (2001), pp.1157-1162.
DOI: 10.1016/s0360-3016(00)01524-8
Google Scholar
[4]
Joe Budman, Gilbert Chu, Processing of DNA for nonhomologous end-joining by cell-free extract, The EMBO Journal, vol. 24 (2005), pp.849-860.
DOI: 10.1038/sj.emboj.7600563
Google Scholar
[5]
Kurt W. Kohn, Yves Pommier, Molecular interaction map of the p.53 and Mdm2 logic elements, which control the Off-On switch of p.53 in response to DNA damage, Biochemical and Biophysical Research Communications, vol. 331 (2005), p.816–827.
DOI: 10.1016/j.bbrc.2005.03.186
Google Scholar
[6]
KC. Chou, Review: Structural bioinformatics and its impact to biomedical science. Curr Med Chem, vol. 11 (2004), p.2105–2134.
Google Scholar
[7]
N. Bellomo, Modelling Complex Living Systems - A Kinetic Theory and Stochastic Game Approach, Birkaüser, Boston (2008).
Google Scholar
[8]
N. Bellomo and G. Forni, Complex multicellular systems and immune competition: New paradigms looking for a mathematical theory, Current Topics in Developmental Biology, vol. 81 (2008), pp.485-502.
DOI: 10.1016/s0070-2153(07)81017-9
Google Scholar
[9]
N. Bellomo, M. Delitala, From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Physics of Life Reviews, vol. 5(2008), pp.183-206.
DOI: 10.1016/j.plrev.2008.07.001
Google Scholar
[10]
I. Brazzoli, From the discrete kinetic theory to modelling open systems of active particles. Applied Mathematics Letters, vol. 21 (2008), p.155–160.
DOI: 10.1016/j.aml.2007.02.018
Google Scholar
[11]
N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Complexity and mathematical tools toward the modelling of multicellular growing systems, Mathematical and Computer Modelling, vol. 51(2010), pp.441-451.
DOI: 10.1016/j.mcm.2009.12.002
Google Scholar
[12]
L. Ma, J. Wagner, J. Jeremy, et al, A plausible model for the digital response of p.53 to DNA damage, PNAS, vol. 102 (2005), p.14266–14271.
Google Scholar
[13]
JP. Qi, SH. Shao, et al, A dynamic model for the p.53 stress response networks under ion radiation. Amino Acids, vol. 33 (2007), pp.75-83.
DOI: 10.1007/s00726-006-0454-3
Google Scholar
[14]
JP. Qi, SH. Shao, YZ. Shen, Cellular responding DNA damage: an improved modeling of p.53 gene regulatory networks under ion radiation (IR). Appl Math Comput, vol. 205 (2008), pp.73-83.
DOI: 10.1016/j.amc.2008.05.131
Google Scholar
[15]
JP. Qi, YS. Ding, SH. Shao, Dynamic modeling of cellular response to DNA damage based on p.53 stress response networks, Progress in Natural Science, vol. 19 (2009), pp.1349-1356.
DOI: 10.1016/j.pnsc.2009.03.008
Google Scholar