[1]
M.J.D. Powell: On the Lagrange functions of quadratic models that are defined by interpolation, Optim. Methods Softw, 16, p.289–309 (2001).
Google Scholar
[2]
M.J.D. Powell: UOBYQA: Unconstrained optimization by quadratic approximation, Math. Program., Ser. B 92: 555-582 (2002).
DOI: 10.1007/s101070100290
Google Scholar
[3]
A.R. Conn, K. Scheinberg, and L.N. Vicente: Global convergence of general derivative–free trust-region algorithms to first-and second-order critical points, SIAM J. OPTIM., Vol. 20, No. 1, p.387–415 (2009).
DOI: 10.1137/060673424
Google Scholar
[4]
A.R. Conn, K. Scheinberg, and L. N. Vicente: Geometry of interpolation sets in derivative free optimization, Math. Program., 111, p.141–172 (2008).
DOI: 10.1007/s10107-006-0073-5
Google Scholar
[5]
Q.H. Zhou: On the use of simplex methods in constructing quadratic models, Science in China Series A: Mathematics, 50(7), pp.913-924 (2007).
DOI: 10.1007/s11425-007-0054-z
Google Scholar
[6]
Q.H. Zhou: A New Algorithm on quadratic interpolation models, Chinese journal of Engineering Mathematics 23(6), pp.1075-1087 (2006).
Google Scholar
[7]
M.J.D. Powell: On the use of quadratic models in unconstrained minimization without derivatives, Optimization Methods and Software, 19, pp.399-411 (2004).
DOI: 10.1080/10556780410001661450
Google Scholar
[8]
T. G. Kolda, R. M. Lewis, and V. Torczon: Optimization by direct search: New perspectives on some classical and modern methods, SIAM Rev., 45, p.385–482 (2003).
DOI: 10.1137/s003614450242889
Google Scholar
[9]
V. Torczon: On the convergence of pattern search algorithms, SIAM J. Optim., 7, p.1–25(1997).
Google Scholar
[10]
C. Audet and J. E. Denni: Analysis of generalized pattern searches, SIAM J. Optim., 13 , p.889–903 (2003).
DOI: 10.1137/s1052623400378742
Google Scholar
[11]
J.A. Nelder and R. Mead: A simplex method for function minimization, The computer Journal, 7(4): 308-313 (1965).
DOI: 10.1093/comjnl/7.4.308
Google Scholar
[12]
V.J. Torczon: Multi-directional Search: A direct search algorithm for parallel machines, Ph. D Thesis, Rice University, Houston, Texas, USA (1989).
Google Scholar
[13]
J.J. Moré, B.S. Garbow, and K.E. Hillstorm: Testing unconstrained optimization software, ACM Transactions on Mathamatical Software, 7, pp.17-41 (1981).
DOI: 10.1145/355934.355936
Google Scholar