A Note on Wedge Trust Region Radius Update

Article Preview

Abstract:

Wedge trust region method based on traditional trust region is designed for derivative free optimization problems. This method adds a constraint to the trust region problem, which is called “wedge method”. The problem is that the updating strategy of wedge trust region radius is somewhat simple. In this paper, we develop and combine a new radius updating rule with this method. For most test problems, the number of function evaluations is reduced significantly. The experiments demonstrate the effectiveness of the improvement through our algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

926-931

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.R. Coon, K. Scheinberg, and Ph.L. Toint: Recent progress in unconstrained nonlinear optimization without derivatives, Mathematical Programming, 79, pp.397-414 (1997).

DOI: 10.1007/bf02614326

Google Scholar

[2] M.J.D. Powell: Direct search algorithms for optimization calculations, Acta Numerica, 7, pp.287-336 (1998).

DOI: 10.1017/s0962492900002841

Google Scholar

[3] M. Marazzi and J. Nocedal: Wedge trust region methods for derivative free optimization, Math. Program., Series A, 91, p.289–305 (2002).

DOI: 10.1007/s101070100264

Google Scholar

[4] A.R. Conn, K. Scheinberg, and L. Vicente: Geometry of interpolation sets in derivative free optimization, Mathematical Programming, Series A, 111, p.141–172 (2007).

DOI: 10.1007/s10107-006-0073-5

Google Scholar

[5] G. Fasano, J.L. Morales and J. Nocedal: On the geometry phase in model-based algorithms for derivative-free optimization, Optimization Methods & Software, Vol 24, issue 1, pp.145-154, (2009).

DOI: 10.1080/10556780802409296

Google Scholar

[6] A.R. Conn, K. Scheinberg, and L.N. Vicente: Global convergence of general derivative-free trust-region algorithms to first- and second-order critical points, SIAM J. Optim., 20(1), p.387–415 (2009).

DOI: 10.1137/060673424

Google Scholar

[7] M.J.D. Powell: New developments of NEWUOA for minimization without derivatives, Tech. Rep. DAMPT 2007/NA05, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, (2007).

Google Scholar

[8] J.L. Morales: A trust region based algorithm for unconstrained derivative–free optimization, Tech. Rep., Departamento de Matemáticas, ITAM, (2007).

Google Scholar

[9] J.J. Moré and D.C. Sorensen: Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, 4, pp.553-572 (1983).

DOI: 10.1137/0904038

Google Scholar

[10] Jéròme M.B. Walmag, and éric J.M. Delhez: A note on trust-region radius update, SIAM J. Optim., 16(2), pp.548-582 (2005).

DOI: 10.1137/030602563

Google Scholar

[11] I. Bongartz, A.R. Conn, N.I.M. Gould, and Ph. L. Toint: CUTE: Constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, 21(1), pp.123-160 (1995).

DOI: 10.1145/200979.201043

Google Scholar

[12] A.R. Conn, N.I.M. Gould, and P.L. Toint: Trust Region Methods, MPS/SIAM Ser. Optim. 1, SIAM, Philadelphia, (2000).

Google Scholar

[13] L. Hei: A self-adaptive trust region algorithm, J. Comput. Math., 21, p.229–236 (2003).

Google Scholar

[14] Information on http: /www. eecs. northwestern. edu/~nocedal/wedge. html.

Google Scholar