Micromagnetic Simulation of Magnetic Structure in an Exchange-Coupled Trilayer

Article Preview

Abstract:

The reversal process of an exchange spring trilayer was studied by micromagnetic simulation, simulating the hysteresis loop and magnetic domain wall structure of a soft/hard/soft ferromagnetic exchange spring. The exchange spring effect was observed, determining the chirality of its spiral magnetization configuration. By simulation of the domain wall structure, we find that reversal nucleation emerge simultaneously in either surface of two soft layers and the magnetic moments of hard layer start rotation at reversible stage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

543-546

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Skomski, J.M.D. Coey. Giant energy product in nanostructured two-phase magnets. Phys. Rev. B, 1993, 48 (21): 15812~15816.

DOI: 10.1103/physrevb.48.15812

Google Scholar

[2] E.E. Fullerton, J.S. Jiang, M. Grimsditch, et al. Exchange-spring behavior in epitaxial hard/soft magnetic bilayers. Phys. Rev. B, 1998, 58(18): 12193~12200.

DOI: 10.1103/physrevb.58.12193

Google Scholar

[3] N.H. Duc, D.T. Huong Giang, N. Chau. Novel exchange-spring configuration for excellent magnetic and magnetostrictive softness. J. Magn. Magn. Mat., 2005, 290-291: 800~803.

DOI: 10.1016/j.jmmm.2004.11.368

Google Scholar

[4] H. D. Chopra, M. R. Sullivan, A. Ludwig, and E. Quandt. Magnetoelastic and magnetostatic interactions in exchange-spring multilayers. Phys. Rev. B, 2005, 72: 054415-1~054415-7.

DOI: 10.1103/physrevb.72.054415

Google Scholar

[5] E. F. Kneller, R. Hawig. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27: 3588~3595.

DOI: 10.1109/20.102931

Google Scholar

[6] F. Yildiz, O. Yalcin, M. Ozdemir, et al. Magnetic properties of Sm–Co/Fe exchangespring magnets.J. Magn. Magn. Mat, 2004,272-276(Supplement 1): e1941~ e1942.

Google Scholar

[7] Fullerton E E, Jiang J S, Grimsditch M, et al. Exchange-spring behavior in epitaxial hard/soft magnetic bilayers. Phys Rev B, 1998, 58 (18): 12193.

DOI: 10.1103/physrevb.58.12193

Google Scholar

[8] Donovan K V, Borchers J A, Majkrzak C F, et al. Pinpointing chiral structures with front-back polarized neutron reflectometry. Phy Rev Lett, 2002, 88 (6): 067201.

DOI: 10.1103/physrevlett.88.067201

Google Scholar

[9] L.S. Huang, J.F. Hu, J.S. Chen. Critical Fe thickness for effective coercivity reduction in FePt/Fe exchange-coupled bilayer. J. Magn. Magn. Mat, 2012, 324: 1242~1247.

DOI: 10.1016/j.jmmm.2011.11.026

Google Scholar

[10] Nguyen Hoang Hai, et al. Anomalous magnetic viscosity in a-Fe(Co)/(Nd, Pr)2Fe14B exchange-spring magnet. J. Magn. Magn. Mat, 2011, 323: 3156~3161.

Google Scholar

[11] Suess D , Schrefl T , Dit t rich R , et al. Exchange spring recording media for areal densities up to 10 Tbit/ in2. J Magn Magn Mat, 2005, 290-291 (Part 1): 551.

DOI: 10.1016/j.jmmm.2004.11.525

Google Scholar

[12] Gubbiotti G, et al. St ructural and magnetic properties of exchange-spring FeTaN/ FeSm/ FeTaN multilayers. Surf Sci, 2004, 566-568 (Part 1): 285.

DOI: 10.1016/j.susc.2004.05.057

Google Scholar

[13] Gubbiotti G, Carlotti G, Weston J, et al. Asymmetry in the static and dynamic magnetic properties of a weak exchange spring trilayer. J Magn. Magn. Mat, 2005, 286: 479.

DOI: 10.1016/j.jmmm.2004.09.140

Google Scholar

[14] Vavassori P , Gubbiotti G, Carlotti G, et al. Magnetization reversal in exchange-coupled FeTaN/ FeSm/ FeTaN multi-layers. J Magn. Magn. Mat, 2004, 272-276 (Suppl 1): e949.

DOI: 10.1016/j.jmmm.2003.12.258

Google Scholar

[15] Yan Shi shen, Liu W J, Weston J L, et al. Magnetization reversal mechanism of hard/soft exchange-coupled trilayers. Phys Rev B, 2001, 63: 174415.

DOI: 10.1103/physrevb.63.174415

Google Scholar