The Influence of NaOH Concentration on the Performance of ZnO by a Hydrothermal Process

Article Preview

Abstract:

Zinc oxide (ZnO) with various morphologies have been successfully prepared by a hydrothermal process from zinc acetate (Zn (CH3COO)2) and sodium hydroxide (NaOH) solution. The influence of NaOH concentration on the morphology of ZnO was investigated. And ZnO with various morphologies were applied in dye-sensitized solar cells (DSCs) as the photoelectrodes. Results show that the c-axis preferred growth of ZnO is becoming increasingly obvious with the increase of NaOH concentration. There are a lof of differences in the photovoltaic performances of DSCs, which are based on ZnO with various morphologies as the photoelectrodes. DSC consisted of ZnO nanoparticles has optimal performances, the corresponding short circuit photocurrent density (Jsc), open circuit voltage (Voc), fill factor (FF) and photoelectric conversion efficiency (η) are 3.97 mA/cm2, 0.653 V,0.59 and 1.52 %, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

563-566

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] T. N. Murakami and M. Grätzel: Inorg. Chim. Acta. Vol. 361 (2008), p.572.

Google Scholar

[3] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel: Science Vol. 334 (2011), p.629.

DOI: 10.1126/science.1209688

Google Scholar

[4] D. Chen, H. Zhang, S. Hu and J. H. Li: J. Phys. Chem. C Vol. 112 (2008), p.117.

Google Scholar

[5] K. Keis, C. Bauer, G. Boschloo, A. Hagfeldta, K. Westermarkb, H. Rensmob and H. Siegbahnb. J. Photochem. Photobiol., A Vol. 148 (2002), p.57.

Google Scholar

[6] M. Grätzel. Nature Vol. 414 (2001), p.338.

Google Scholar

[7] M. Yanagida, A. Islam, Y. Tachibana, G. Fujihashi, R. Katoh, H. Sugihara and H. Arakawa. New J. Chem. Vol. 26 (2002), p.963.

DOI: 10.1039/b202975h

Google Scholar

[8] W. Kubo, S. Kambe, S. Nakada, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida. J. Phys. Chem. B Vol. 107(2003), p.4374.

Google Scholar

[9] T. P. Chou, Q. F. Zhang, G. E. Fryxell and G. Z. Cao: Adv. Mater. Vol. 19 (2007), p.2588.

Google Scholar

[10] N. Anders and M. Grätzel: J. Phys. Chem. B Vol. 103 (1999), p.7831.

Google Scholar

[11] W. Chen, H. F. Zhang, I. M. Hsing and S. H. Yang: Electrochem. Commun. Vol. 11 (2009), p.1057.

Google Scholar

[12] J. Chung,J. Myoung,J. Oh and S. Lim: J. Phys. Chem. C Vol. 114 (2010), p.21360.

Google Scholar