Identification and Bioinformatics Analysis of Cysteine Synthase from the Filamentous Fungus, Monascus purpureus

Article Preview

Abstract:

A gene encoding a putative cysteine synthase was obtained by screening Monascus purpureus cDNA library. Bioinformatics analysis showed that this protein has Rhodanese Homology Domain in C-terminal, and Pyridoxal-phosphate dependent enzyme domain in N-terminal, and CBS-like structure. The deduced cysteine synthase protein of M. purpureus contained 517 amino acid, with molecular mass of 57,044Da. Sequence alignment analysis revealed that M. purpureus deduced cysteine synthase was closely related to cysteine synthase from Aspergillus, Ajellomyces and Paracoccidioides, and highly homologous to aforementioned and other known cysteine synthase. The structural model of the deduced cysteine synthase closely match the template with 100% confidence and 20-30% identity. The consistency of the comparison results of the primary structure, secondary structure and tertiary structure suggests that the dedued protein may well be cysteine synthase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-275

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Droux, Photosynth Res, 79 (2004) 331-348.

Google Scholar

[2] H.F. Gilbert, Adv Enzymol Relat Areas Mol Biol, 63 (1990) 69-172.

Google Scholar

[3] C.E. Cooper, R.P. Patel, P.S. Brookes, V.M. Darley-Usmar, Trends Biochem Sci, 27 (2002) 489-492.

Google Scholar

[4] K. Saito, Plant Physiol, 136 (2004) 2443-2450.

Google Scholar

[5] K. Saito, Curr Opin Plant Biol, 3 (2000) 188-195.

Google Scholar

[6] M. Wirtz, M. Droux, Photosynth Res, 86 (2005) 345-362.

Google Scholar

[7] B. Bogicevic, H. Berthoud, R. Portmann, L. Meile, S. Irmler, Appl Microbiol Biotechnol, 94 (2012) 1209-1220.

DOI: 10.1007/s00253-011-3677-5

Google Scholar

[8] K. Saito, M. Kurosawa, I. Murakoshi, FEBS Lett, 328 (1993) 111-114.

Google Scholar

[9] J. Feng, P.A. Lindahl, J Am Chem Soc, 126 (2004) 9094-9100.

Google Scholar

[10] I. Wallrodt, L. Jelsbak, L. Thorndahl, L.E. Thomsen, S. Lemire, J.E. Olsen, PLoS One, 8 (2013) e70829.

DOI: 10.1371/journal.pone.0070829

Google Scholar

[11] M. Calahorra, N.S. Sanchez, A. Pena, Yeast, 29 (2012) 357-370.

Google Scholar

[12] D.D. Li, Y. Wang, B.D. Dai, X.X. Li, L.X. Zhao, Y.B. Cao, L. Yan, Y.Y. Jiang, Fungal Genet Biol, 51 (2013) 50-59.

Google Scholar

[13] T. Nakamura, Y. Kawai, K. Kunimoto, Y. Iwasaki, K. Nishii, M. Kataoka, K. Ishikawa, J Mol Biol, 422 (2012) 33-44.

Google Scholar

[14] M.D. Toney, E. Hohenester, J.W. Keller, J.N. Jansonius, J Mol Biol, 245 (1995) 151-179.

Google Scholar

[15] R. Schnell, W. Oehlmann, M. Singh, G. Schneider, J Biol Chem, 282 (2007) 23473-23481.

Google Scholar