Design and Analysis of Hermetic Single Chip Packaging for Large Format Thermistor

Article Preview

Abstract:

The paper presents the hermetic thermistor sensor packaging with 12.8mm×9.6mm used in exothermic reactions detection. The mechanical analysis was conducted including the germanium (Ge) window stress and deformation caused by process stress and vacuum effects. The maximum deformation of Ge window is about 281.5μm and the stress intensity is about 650.19MPa. YbF3 with the thickness of 1.36μm and 1.09μm are used as double-layer antireflection films to weaken the reflection incidents. The transmission is 87.82% for 8-14μm wavelengths as calculated. The paper also presents the influence of vacuum environment on detectors performance. The results suggest that the temperature response approaching to theoretical value when the chamber pressure is lower than 0.01 mbar. At last, this work illustrates the process flow and fabrication details of the packaging devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-269

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rogalski: Infrared Physics & Technology. 43 (2002) 187-210.

Google Scholar

[2] T. Dong, Z. Yang, Q. Bi, Y. Zhang: Heat Mass Transfer. 44 (2008) 315-324.

Google Scholar

[3] X. Zhao, T. Dong, Z. Yang, N. Pires, N. Høivik: Lab on a Chip. 12 (2012) 602-612.

Google Scholar

[4] G.K. Mishra, R.K. Mishra, S. Bhand: Biosensors and Bioelectronics. 26 (2010) 1560-1564.

Google Scholar

[5] L. Wang, B. Wang, Q. Lin: Sensors and Actuators B: Chemical. 134 (2008) 953-958.

Google Scholar

[6] O. Lazcka, F. Campo, F.X. Munoz: Biosensors and Bioelectronics. 22 (2007) 1205-1217.

Google Scholar

[7] L. Zhang, T. Dong: J MicromechMicroeng. 23 (2013), 045011.

Google Scholar

[8] B. Jiang, T. Dong, Y. Su, Y. He, K. Wang: JMEMS. (2013), 2269612.

Google Scholar

[9] T. Dong, Z. Yang: J MicromechMicroeng. 18 (2008), 085012.

Google Scholar

[10] N. M. Pires, T. Dong, Z. Yang, N. Høivik, X. Zhao: J MicromechMicroeng. 21 (2011), 115031.

Google Scholar

[11] T. Dong, Z. Yang, Q. Su, N.M. Tran, E.B. Egeland, F. Karlsen, Y. Zhang, M.J. Kapiris, H. Jakobsen:. MicrofluidNanofluid. 10 (2011) 855-865.

Google Scholar

[12] F. Niklaus, C. Vieider, H. Jakobsen: Mems-based uncooled infrared bolometer arrays: A review (Photonics Asia 2007, International Society for Optics and Photonics2007).

DOI: 10.1117/12.755128

Google Scholar

[13] T. Schimert, C. Hanson, J. Brady, T. Fagan, M. Taylor, W. McCardel, R. Gooch, M. Gohlke, A. Syllaios: Advances in small-pixel, large-format α-si bolometer arrays (SPIE Defense, Security, and Sensing, International Society for Optics and Photonics2009).

DOI: 10.1117/12.818576

Google Scholar

[14] N. Roxhed, F. Niklaus, A.C. Fischer, F. Forsberg,L. Höglund, P. Ericsson, B. Samel, S. Wissmar, A. Elfving, T. I Simonsen: Low-cost uncooled microbolometers for thermal imaging (SPIE Photonics Europe, International Society for Optics and Photonics 2010).

DOI: 10.1117/12.855752

Google Scholar

[15] T. Zhou, T. Dong, Y. Su, Y. He: High-precision and low-cost wireless 16-channel measurement system for multi-layer thin film characterization (Measurement 2013).

DOI: 10.1016/j.measurement.2013.06.051

Google Scholar

[16] F. Forsberg, N. Roxhed, P. Ericsson, S. Wissmar: High-performance quantum-well silicon-germanium bolometers using ic-compatible integration for low-cost infrared imagers (Solid-State Sensors, Actuators and Microsystems Conference 2009).

DOI: 10.1109/sensor.2009.5285617

Google Scholar

[17] B. Xiao, T. Dong, E. Halvorsen, Z. Yang, Y. Zhang, N. Hoivik, D. Gu, N.M. Tran, H. Jakobsen: Microsystem technologies. 17 (2011) 115-125.

DOI: 10.1007/s00542-010-1186-6

Google Scholar

[18] P.A. Silberg: JOSA. 47 (1957) 575-578.

Google Scholar

[19] L.N. Hadley, D. Dennison: JOSA. 37 (1947) 451-453.

Google Scholar

[20] S. Tohyama, M. Miyoshi, S. Kurashina, N. Ito, T. Sasaki, A. Ajisawa, Y. Tanaka, A. Kawahara, K. Iida, N. Oda: Optical Engineering. 45 (2006) 014001-014010.

Google Scholar