[1]
O. Siegmund, J. Vallerga, J. McPhate, J. Malloy, A. Tremsin, A. Martin, M. Ulmer, and B. Wessels, Development of GaN photocathodes for UV detectors, Nucl. Instrum. Meth. A 567, 89-92(2006).
DOI: 10.1016/j.nima.2006.05.117
Google Scholar
[2]
U. Shoichi, T. Yasufumi, N. Minoru, and K. Hirofumi, GaN-based photocathodes with extremely high quantum efficiency, Appl. Phys. Lett. 86, 103511-1-103511-3(2005).
DOI: 10.1063/1.1883707
Google Scholar
[3]
X. Fu, et al., Optimizing GaN photocathode structure for higher quantum efficiency, Optik - Int. J. Light Electron Opt. 123, 765-768(2012).
DOI: 10.1016/j.ijleo.2011.05.032
Google Scholar
[4]
M. Ulmer, B. Wessels, O. Siegmund, Progress in the fabrication of GaN photocathodes, Proc. SPIE 4650, 94-97 (2002).
Google Scholar
[5]
J. Stock, G. Hilton, T. Norton, B. Woodgate, S. Aslam, and M. Ulmer, Progress on development of UV photocathodes for photon-counting applications at NASA GSFC, Proc. SPIE 5898, 58980F-1- 58980F-8 (2005).
DOI: 10.1117/12.617517
Google Scholar
[6]
S Fuke, M Sumiy, T Nihashi, M Hagino, M Matsumoto, Y Kamo, M Sato and K Ohtsuka, Development of UV-photocathodes using GaN film on Si substrate, Proc. SPIE 6894, 68941F-1-68941F-7(2008).
DOI: 10.1117/12.770233
Google Scholar
[7]
X Q Fu, B K Chang, X H Wang, B Li, Y J Du and J J Zhang, Photoemsission of graded-doping GaN photocathode, Chin. Phys. B 20, 03702-1-03702-5 (2011).
Google Scholar
[8]
X.Q. Fu, B.K. Chang, Y.S. Qian and J.J. Zhang, In-situ multi-information measurement system for preparing gallium nitride photocathode, Chin. Phys. B 21, 030601-1-4(2012).
DOI: 10.1088/1674-1056/21/3/030601
Google Scholar
[9]
X.H. Wang, B.K. Chang, Y.J. Du, J.L. Qiao, Quantum efficiency of GaN photocathode under different illumination, Appl. Phys. Lett. 99, 042102-1-3(2011).
DOI: 10.1063/1.3614555
Google Scholar
[10]
Jijun Zou, Benkang Chang, Zhi Yang, Jianliang Qiao, and Yiping Zeng, Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system, Appl. Phys. Lett. 92, 172102-172104(2008).
DOI: 10.1063/1.2918444
Google Scholar
[11]
S. Pastuszka, A.S. Terekhov and A. Wolf, Stable to unstable'transition in the (Cs, O)activation layer on GaAs(100)surfaces with negative electron affinity in extremely high vacuum, Appl. Surf. Sci. 99, 361-365(1996).
DOI: 10.1016/0169-4332(96)00106-7
Google Scholar
[12]
Tatsuaki Wada, Toshiyuki Nitta, Takashi Nomura, Masahiro Miyao and Minoru Hagino, Influence of Exposure to CO, CO2 and H2O on the Stability of GaAs Photocathodes, Japanese journal of applied physics, 29, 2087-2091(1990).
DOI: 10.1143/jjap.29.2087
Google Scholar
[13]
V.L. Alperovich, A.G. Paulish, A.S. Terekhov, Domination of adatom-induced over defect-induced surface states on p-type GaAs(Cs, O)at room temperature, Phys. Rev. B 50, 5480-5483(1994).
DOI: 10.1103/physrevb.50.5480
Google Scholar
[14]
F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer and R. F. W. Pease, Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes, J. Vac. Sci. Technol. B 21, 1863-1869 (2003).
DOI: 10.1116/1.1589512
Google Scholar
[15]
Xiaoqian Fu and Junju Zhang, Reactivation of gallium nitride photocathode with cesium in a high vacuum system, OPTIK, 124, 7007-7009(2013).
DOI: 10.1016/j.ijleo.2013.07.004
Google Scholar