Direction of Arrival Estimation Based on a Tensor Approach

Article Preview

Abstract:

In this letter, we put forward a novel tensor-based Multiple Signal Classification (TB-MUSIC) applicable to a vector hydrophone array. For this purpose, the signal subspace is derived from the higher order singular value decomposition (HOSVD) of the third order tensor of the output model. Then the proposed method is achieved by signal subspace projection weighted with the reciprocal of principal singular values multiplying by the spatial spectrum based on TB-MUSIC. The synthetic spatial spectrum shows higher resolution and robustness under no-ideal scenarios. Monte Carlo experimental results are provided to illustrate the better performance of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

581-585

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. D Lathauwer, Signal Processing based on Multilinear Algebra, Belgium: Katholieke Universiteit Leuven, (1997).

Google Scholar

[2] S. Miron, N. Le Bihan, J. Mars, Vector-Sensor Music for Polarized Seismic Sources Location, EURASIP Journal on Appl. Signal Precoss. 2005(1): 74-84.

DOI: 10.1155/asp.2005.74

Google Scholar

[3] K. T Wong M. D Zoltowski, Self initating MUSIC based direction finding in underwater acoustic particle velocity field beamspace, IEEE Journal of oceanic engineering. 2000(25): 262-272.

DOI: 10.1109/48.838989

Google Scholar

[4] M. Haardt, F. Roemer, G. D Galdo, Higher order SVD based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems, IEEE trans. Signal Process, 56(7): 3198-3212.

DOI: 10.1109/tsp.2008.917929

Google Scholar

[5] X. -F. Gong, Z. -W. Liu, Y. -G. Xu, M.I. Ahmad, Direction of arrival estimation via twofold mode projection, Signal Processing, 2009(89): 831-842.

DOI: 10.1016/j.sigpro.2008.10.034

Google Scholar

[6] H.L. Van Tree, Optimum array processing: Detection, Estimation, and Modulation Theory, New York: Wiley, 2002, pt. IV.

Google Scholar

[7] X. -F. Gong, Z. -W. Liu, Y. -G. Xu, On the equivalence of tensor-MUSIC and matrix-MUSIC, in: Proceedings of the ISAPE, Beijing, China, 2006, pp: 231-233.

Google Scholar

[8] A. Thakre, M. Haardt, F. Roemer, K. Giridhar, Tensor based spatial smoothing using multiple snapshots, IEEE trans. Signal Process, 58(5): 2715- 2727.

DOI: 10.1109/tsp.2010.2043141

Google Scholar

[9] A. Quinlan, J.P. Barbot, P. Larzabal, M. Haardt, Model order selection for short data: an exponential fitting test (EFT), in: EURASIP Journal on Advances in Signal Processing, vol. 2007, 1-11.

DOI: 10.1155/2007/71953

Google Scholar

[10] L. D Lathauwer, B. D Moor, J. Vanderwalle, A multilinear singular value decomposition, SIAM Journal Matrix Anal Appl. 2000(21): 1253-1278.

DOI: 10.1137/s0895479896305696

Google Scholar