[1]
M s Berger, M. Schechter. on the solvability of gradient operator equations. Adv Math, 1977, 25, 97-132.
Google Scholar
[2]
C.L. Tang. Existence and multiplicity of periodic solution for nonautonomous second order systems. Nonl Anal TMA, 1998, 32(3), 299-304.
Google Scholar
[3]
X.P. Wu, C.L. Tang. Periodic solutions of a class of nonautonomous second order systems. J Math Anal Appl, 1999, 236, 471-479.
Google Scholar
[4]
C. L. Tang. Periodic solution of nonautonomous second order systems with -quasisubadditive potential. J Math Anal Appl, 1995, 189, 671-675.
Google Scholar
[5]
Y.M. Long. Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials. Nonlinear Anal, 1995, 24, 1665-1671.
DOI: 10.1016/0362-546x(94)00227-9
Google Scholar
[6]
C L Tang, X P Wu. Note on periodic solutions of subquadratic second order systems. J Math Anal Appl, 2003, 285, 8-16.
Google Scholar
[7]
Q. Jiang, C. L Tang. Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems. J Math. Anal appl. 2007, 328(1), 380-389.
DOI: 10.1016/j.jmaa.2006.05.064
Google Scholar
[8]
Zheng J. M, Cheng J.X.,. Periodic solutions for a class of second order Hamiltonian systems. Acta Mathematica Sinica, 2010, 53(4): 721-726.
Google Scholar
[9]
Cheng Y. An, Li.F.Y.,. Periodic solutions of symmetric superquadratic second order Hamiltonian systems. Acta Mathematica Sinica, 2010, 53(4): 827—832.
Google Scholar
[10]
Mawhin J, Willem M. Critical point theory and Hamiltonian Systems. New York: springer-verl. (1989).
Google Scholar