The Series Solution of Fractional Partial Differential Equations via Homotopy Analysis Method

Article Preview

Abstract:

In this letter, we apply the homotopy analysis method (HAM) to obtain analytical solution of the fractional equation where the fractional derivatives are Caputo sense. The example is given to show the efficiency of the method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

613-616

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Oldham K B. Spainer J. The fractional calculus[M]. New York: Aeademic Press. (1974).

Google Scholar

[2] Miller K S. Ross B. New York: Wiley-Intersetence Publication. (1993).

Google Scholar

[3] Mainardi F. Chaos. Solitons & Fractals, 1996. 7: 1461-1477.

Google Scholar

[4] Li C P. Deng W H. Xu D. Physica A, 2006, 360: 171-185.

Google Scholar

[5] Liu Su-rong, Yang Jiao. Journal of Hunan Institute of Science and Technology (Natural Sciences), 2010, 23(2): 20-22.

Google Scholar

[6] GUO Peng, WANG Yihong, Tao Chunxing, Li Changpin. Science & Technology Review. 2009, 27(2): 47-52.

Google Scholar

[7] Liao, S. J. PhD dissertation, Shanghai Jiao Tong University, (1992).

Google Scholar

[8] Talay Akyildiz, F., Vajravelu, K., Liao, S.J. Chaos, Solitons Fractals, 2009, 39: 1073–1082.

DOI: 10.1016/j.chaos.2007.04.021

Google Scholar

[9] Liao, S.J. Nonlinear Anal.: Real World Appl. 2009, 10: 2455–2470.

Google Scholar

[10] Ghotbi, A.R., Bararnia, Domairry, G., Barari, A. Commun. Nonlinear Sci. Numer. Simulat, 2009, 14: 2222–2228.

Google Scholar