[1]
S.C. Liu, S.J. Hu, Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods, Journal of Manufacturing Science and Engineering, 119 (1997) 368-374.
DOI: 10.1115/1.2831115
Google Scholar
[2]
J.A. Camelio, S.J. Hu, S.P. Marin, Compliant Assembly Variation Analysis Using Component Geometric Covariance, Journal of Manufacturing Science and Engineering, 126 (2004) 355-360.
DOI: 10.1115/1.1644553
Google Scholar
[3]
J.A. Camelio, S.J. Hu, D. Ceglarek, Impact of fixture design on sheet metal assembly variation, Journal of Manufacturing Systems, 23 (2004) 182-193.
DOI: 10.1016/s0278-6125(05)00006-3
Google Scholar
[4]
J. Camelio, S.J. Hu, D. Ceglarek, Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts, Journal of Mechanical Design, 125 (2003) 673-681.
DOI: 10.1115/1.1631574
Google Scholar
[5]
J. Yue, J.A. Camelio, M. Chin, W. Cai, Product-Oriented Sensitivity Analysis for Multistation Compliant Assemblies, Journal of Mechanical Design, 129 (2007) 844-851.
DOI: 10.1115/1.2735341
Google Scholar
[6]
J.A. Camelio, H. Yim, Identification of dimensional variation patterns on compliant assemblies, Journal of Manufacturing Systems, 25 (2006) 65-76.
DOI: 10.1016/s0278-6125(07)00006-4
Google Scholar
[7]
K.W. Chase, A.R. Parkinson, A survey of research in the application of tolerance analysis to the design of mechanical assemblies, Research in Engineering Design, 3 (1991) 23-37.
DOI: 10.1007/bf01580066
Google Scholar
[8]
W.W. Cai, C. -C. Hsieh, Y. Long, S.P. Marin, K.P. Oh, Digital Panel Assembly Methodologies and Applications for Compliant Sheet Components, Journal of Manufacturing Science and Engineering, 128 (2006) 270-279.
DOI: 10.1115/1.2112967
Google Scholar
[9]
S. Dahlstrom, L. Lindkvist, Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling, Journal of Manufacturing Science and Engineering, 129 (2007) 615-622.
DOI: 10.1115/1.2714570
Google Scholar
[10]
X. Liao, G.G. Wang, Non-linear dimensional variation analysis for sheet metal assemblies by contact modeling, Finite Elements in Analysis and Design, 44 (2007) 34-44.
DOI: 10.1016/j.finel.2007.08.009
Google Scholar
[11]
K. Xie, L. Wells, J.A. Camelio, B.D. Youn, Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction, Journal of Manufacturing Science and Engineering, 129 (2007) 934-942.
DOI: 10.1115/1.2752829
Google Scholar
[12]
S. Rahman, H. Xu, A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics, Probabilistic Engineering Mechanics, 19 (2004) 393-408.
DOI: 10.1016/j.probengmech.2004.04.003
Google Scholar
[13]
B. Youn, Z. Xi, P. Wang, Eigenvector dimension reduction (EDR) method for sensitivity-free probability analysis, Structural and Multidisciplinary Optimization, 37 (2008) 13-28.
DOI: 10.1007/s00158-007-0210-7
Google Scholar
[14]
K.G. Merkley, Tolerance Analysis of Compliant Assemblies (PhD Dissertation), Brigham Young University, Provo, UT, (1998).
Google Scholar
[15]
M. Tonks, A Robust Geometric Covariance Method for Flexible Assembly Tolerance Analysis (M. Sc Thesis), Brigham Young University, Provo, UT, (2002).
Google Scholar
[16]
R.A. Johnson, D.W. Wichern, Applied multivariate statistical analysis, 6th ed., Pearson Prentice Hall, Upper Saddle River, NJ, (2007).
Google Scholar
[17]
J. Zhou, Integration formulas to evaluate functions of random variables, Structural Safety, 5 (1988) 267-284.
DOI: 10.1016/0167-4730(88)90028-8
Google Scholar
[18]
A. Papoulis, S.U. Pillai, Probability, random variables and stochastic processes, 4th ed., McGraw-Hill, Boston, MA, (2002).
Google Scholar