[1]
D. Magnusson, Swedish district heating—A system in stagnation: Current and future trends in the district heating sector, Energy Policy. 48 (2012): 449–459.
DOI: 10.1016/j.enpol.2012.05.047
Google Scholar
[2]
A. Korppoo and N. Korobova, Modernizing residential heating in Russia: End-use practices, legal developments, and future prospects, Energy Policy. 42 (2012): 213-220.
DOI: 10.1016/j.enpol.2011.11.078
Google Scholar
[3]
B. Wei, S.L. Wang and L. Li, Fuzzy comprehensive evaluation of district heating systems, Energy Policy. 38 (2010): 5947–5955.
DOI: 10.1016/j.enpol.2010.05.048
Google Scholar
[4]
N. Aste, R.S. Adhikari, J. Compostella and Claudio Del Pero, Energy and environmental impact of domestic heating in Italy: Evaluation of national NOx emissions, Energy Policy. 53 (2013): 353–360.
DOI: 10.1016/j.enpol.2012.10.064
Google Scholar
[5]
Z.H. Lin, Influences of the energy policy reformation of our country on developments of industrial boilers, Industrial Boiler. 18 (2002): 4–7.
Google Scholar
[6]
D. Brkic, and T.I. Tanaskovic, Systematic approach to natural gas usage for domestic heating in urban areas, Energy. 33 (2008): 1738–1753.
DOI: 10.1016/j.energy.2008.08.009
Google Scholar
[7]
H.C. Park and H. Kim, Heat supply systems using natural gas in the residential sector: The case of the agglomeration of Seoul, Energy Policy. 36 (2008): 3843–3853.
DOI: 10.1016/j.enpol.2008.07.011
Google Scholar
[8]
M.S. Torekov, N. Bahnsen and B. Qvale, The relative competitive positions of the alternative means for domestic heating, Energy. 32 (2007): 627 – 633.
DOI: 10.1016/j.energy.2006.10.002
Google Scholar
[9]
H.C. Wang, W. L. Jiao, and P.H. Zou and J.C. Liu, Analysis of an effective solution to excessive heat supply in a city primary heating network using gas-fired boilers for peak-load compensation, Energy and Buildings. 42 (2010): 2090–(2097).
DOI: 10.1016/j.enbuild.2010.06.020
Google Scholar
[10]
C.G. Yin, Z.Y. Luo, J. H, Zhou and K.F. Cen, A Novel Non-Linear Programming-Based Coal Blending Technology for Power Plants, Chemical Engineering Research and Design. 78 (2000): 118-124.
DOI: 10.1205/026387600526951
Google Scholar
[11]
J.C. Wang, W.D. Fan, Y. Li, M. Xiao, K. Wang and P. Ren, The effect of air staged combustion on NOx emissions in dried lignite combustion, Energy. 37 (2012): 725-736.
DOI: 10.1016/j.energy.2011.10.007
Google Scholar
[12]
J. Bai, W. Li, C.Z. Li, Z.Q. Bai and B.Q. Li, Influence of coal blending on mineral transformation at high temperatures, Mining Science and Technology. 19 (2009): 300-305 (In Chinese).
DOI: 10.1016/s1674-5264(09)60056-9
Google Scholar
[13]
Q.Y. Wang, L. Zhang, A. Sato, Y. Ninomiya and T. Yamashita, Effects of coal blending on the reduction of PM10 during high-temperature combustion 1, Fuel. 87 (2008): 2997-3005.
DOI: 10.1016/j.fuel.2008.04.013
Google Scholar
[14]
D.Z. Fu, G.H. Huang and Y.M. Liu, Optimization Study of Coal Blending Based on Heat supply and Power Generation Analysis, Electric power construction. 34 (2013): 71-76 (in Chinese).
Google Scholar