[1]
Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities, Annu. Rev. Microbiol. 56 (2002) 187–209.
DOI: 10.1146/annurev.micro.56.012302.160705
Google Scholar
[2]
Williams MM, Braun-Howland EB. Growth of Escherichia coli in model distribution system biofilms exposed to hypochlorous acid or monochloramine, Appl. Environ. Microbiol. 69 (2003) 5463–5471.
DOI: 10.1128/aem.69.9.5463-5471.2003
Google Scholar
[3]
Z .Y. Wu, Z.H. Qi, B. Wei, et al. Affect the pipe, nutrients and temperature on the water supply network simulation of biofilm formation, Water & Wastewater. 36 (2010) 161-164, (in Chinese).
Google Scholar
[4]
Cong L, Yang Y J, Jieze Y, et al. Second-Order Chlorine Decay and Trihalomethanes Formation in a Pilot-Scale Water Distribution Systems, Water Environment Research, 84 (2012) 656-661.
DOI: 10.2175/106143012x13373550427390
Google Scholar
[5]
Boe-Hansen R, Albrechtsen H J, Arvin E, et al. Bulk water phase and biofilm growth in drinking water at low nutrient conditions, Water Research, 36 (2002) 4477-4486.
DOI: 10.1016/s0043-1354(02)00191-4
Google Scholar
[6]
Z. Su, R.Y. Zhou, Y.Q. Xu, et al. Research on water distribution network wall biofilm growth characteristics, Water Purification Technology, 29 (2010) 58-61, (in Chinese).
Google Scholar
[7]
Simões L C, Simões M, Vieira M J. A comparative study of drinking water biofilm monitoring with flow cell and Propella™ bioreactors, Water Science & Technology: Water Supply, 2012, pp.334-342.
DOI: 10.2166/ws.2011.139
Google Scholar
[8]
Hallam N B, West J R, Forster C F, et al. The potential for biofilm growth in water distribution systems, Water Research, 35 (2001) 4063-4071.
DOI: 10.1016/s0043-1354(01)00248-2
Google Scholar
[9]
Lehtola M J, Miettinen I T, Martikainen P J. Biofilm formation in drinking water affected by low concentrations of phosphorus, Canadian journal of microbiology, 48 (2002) 494-499.
DOI: 10.1139/w02-048
Google Scholar
[10]
Morton S C, Zhang Y, Edwards M A. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems, Water research, 39 (2005) 2883-2892.
DOI: 10.1016/j.watres.2005.05.024
Google Scholar
[11]
Butterfield P W, Camper A K, Biederman J A, et al. Minimizing biofilm in the presence of iron oxides and humic substances, Water research, 36 (2002) 3898-3910.
DOI: 10.1016/s0043-1354(02)00088-x
Google Scholar
[12]
Lehtola M J, Miettinen I T, Keinänen M M, et al. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes, Water research, 38(2004) 3769-3779.
DOI: 10.1016/j.watres.2004.06.024
Google Scholar
[13]
S. Li, X.J. Zhang. Growth factors and their impact on water wall biofilms, China Water & Wastewater. 19 (2003) 49-52.
Google Scholar
[14]
L.L. Zhou, Y.J. Zhang, F. Huang, et al. Water wall biofilm characteristics and control methods, Water Purification Technology, 27 (2008) 5-8.
Google Scholar
[15]
Hallam N B, West J R, Forster C F, et al. The decay of chlorine associated with the pipe wall in water distribution systems, Water Research. 36 (2002) 3479-3488.
DOI: 10.1016/s0043-1354(02)00056-8
Google Scholar