Production of Clean Fuel Utilizing the Unsupported Sulfide Catalysts

Article Preview

Abstract:

The sulfur specification for diesel fuel has been tightened exponentially over the years. In this manuscript, the unsupported Ni-Mo (-W) sulfide hydrotreating catalysts were prepared to produce the clean diesel fuel with ultra-low sulfur, nitrogen, and aromatics contents. The X-ray Diffraction (XRD), Low Temperature N2 Adsorption (BET method), and High Resolution Transmission Electron Microscope (HRTEM) were applied to characterize the as-prepared catalysts. The characterization results indicate that the unsupported Ni-Mo (-W) hydrotreating catalyst have high specific surface area, large pore volume, high MoS2 or WS2 stacking layers, and large MoS2 or WS2 crystal length. The catalysts were evaluated in the micro-reactor using FCC diesel fuel as the raw material. The evaluation results reveal that the unsupported Ni-Mo (-W) catalysts have excellent hydrogenation performance. Utilizing the unsupported Ni-Mo (-W) sulfide catalysts is an efficient method to produce clean diesel fuel. Keywords: clean fuel; Ni-Mo (-W) sulfide; catalyst; hydrogenation

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-90

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. S. Song, X. L. Ma, New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Appl. Catal. B: environ. 41 (2003) 207–238.

DOI: 10.1016/s0926-3373(02)00212-6

Google Scholar

[2] H. Nava, F. Pedraza, G. Alonso, Nickel-Molybdenum-Tungsten Sulphide catalysts prepared by in situ activation of tri-metallic (Ni-Mo-W) alkylthiomolybdotungstates, Catal. Lett. 99 (2005) 65–71.

DOI: 10.1007/s10562-004-0777-1

Google Scholar

[3] R. Huirache-Acuña, M. A. Albiter, J. Espino, C. Ornelas, G. Alonso-Nuñez, F. Paraguay-Delgado, J. L. Rico, R. Martínez-Sánchez, Synthesis of Ni-Mo-W sulphide catalysts by ex situ decomposition of trimetallic precursors, Appl. Catal. A: Gen. 304 (2006).

DOI: 10.1016/j.apcata.2006.02.032

Google Scholar

[4] R. Huirache-Acuña, M. A. Albiter, C. Ornelas, F. Paraguay-Delgado, R. Martínez-Sánchez, G. Alonso-Nuñez, Ni(Co)-Mo-W sulphide unsupported HDS catalysts by ex situ decomposition of alkylthiomolybdotungstates, Appl. Catal. A: Gen. 308 (2006).

DOI: 10.1016/j.apcata.2006.04.015

Google Scholar

[5] L. Vradman, M. V. Landau, Structure–Function Relations in Supported Ni–W Sulfide Hydrogenation Catalysts, Catal. Lett. 77 (2001) 47–54.

Google Scholar

[6] L.H. Ding, Y. Zheng, Z.S. Zhang, Z. Ring. Hydrotreating of light cycled oil using WNi/Al2O3 catalysts containing zeolite beta and/or chemically treated zeolite Y, J. Catal., 241(2006) 435-445.

DOI: 10.1016/j.jcat.2006.05.004

Google Scholar

[7] D. I. Kochubey, V. P. Babenko. Structure of MoS2-based Catalysts for hydrosulfurization prepared via exfoliation, Catal. Lett. 77(2002) 237-243.

Google Scholar

[8] G. Berhault, A. Mehta, A. C. Pavel, J. Z. Yang. The Role of Structural Carbon in Transition Metal Sulfides Hydrotreating Catalysts, J. Catal. 198(2001) 9-19.

DOI: 10.1006/jcat.2000.3124

Google Scholar

[9] L. Vradman, M. V. Landau, M. Herskowitz, V Ezersky. High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation, J. Catal. 213(2003) 163-175.

DOI: 10.1016/s0021-9517(02)00012-x

Google Scholar

[10] Tye, C. T.; Smith, K. Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst, J. Catal. Today, 114(2006) 461-468.

DOI: 10.1016/j.cattod.2006.06.028

Google Scholar

[11] G. J. An, C. G. Liu, C. H. Xiong, C. B. Lu, Study on Morphology of Unsupported Ni-Mo-W Sulfide Hydrotreating Catalysts through High Resolution Transmission Electron Microscopy, Petro. Sci. Tech. 30(2012) 1599-1608.

DOI: 10.1080/10916466.2010.509065

Google Scholar

[12] Y. Miki, Y. Sugimoto, Hydrodenitrogenation of isoquinoline, Appl. Catal. A: Gen. 180 (1999) 133–140.

Google Scholar