Microbial Oil Production from Lignocellulosic Biomass – Recent Development and Prospect

Article Preview

Abstract:

Microbial oil is one of the ideal raw materials for biodiesel production because of its rapid reproduction and less influence by the climate and season variation. However, the high cost is one of the key issues that restricted its production in a large-scale. Lignocellulosic biomass, the cheap and renewable resource, might be the best raw material for microbial oil production by oleaginous microorganisms. Recent development on the microbial oil production from lignocellulosic biomass was summarized in this paper. Furthermore, the challenges and application potential of microbial oil were prospected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

397-403

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ma YL. Microbial oils and its research advance[J]. Chin J Bioprocess Eng, 4(4): 7–11, (2006).

Google Scholar

[2] Meng X, Yang JM, Xu X, Zhang L, Ni QJ, Xian M. Biodiesel production from oleaginous microorganisms[J]. Renew Energy, 34(1): 1–5, (2009).

DOI: 10.1016/j.renene.2008.04.014

Google Scholar

[3] Zhao XB, Peng F, Du W, Liu CM, Liu DH. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid[J]. Bioprocess Biosyst Eng, 35(6): 993–1004, (2012).

DOI: 10.1007/s00449-012-0684-6

Google Scholar

[4] Xue DH, Zhang H, Pan AL, Li DF, Zhao ZB, Lu XT, Gong L, Wang J, Wu HF. CN 101974371 [P] (in Chinese), (2011).

Google Scholar

[5] Zhang J, Zhang XD, Xu HP, Li Y, Zhao BF, Chen L, Zhao ZB, Sun L . The Cultivation and Lipids Accumulation of Cryptococcus curvatus O3 Yeast [J]. Microbiology, 2009, 36(1): 41-45.

Google Scholar

[6] Ahmed SU, Singh SK, Pandey A, Kanjilal S, Prasad RBN. Effects of various process parameters on the production of gamma-linolenic acid in submerged fermentation[J]. Food Technology and Biotechnology, 44(2): 283-287, (2006).

Google Scholar

[7] Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina[J]. Biomass And Bioenergy, 33(4): 573-580, (2009).

DOI: 10.1016/j.biombioe.2008.09.006

Google Scholar

[8] Zhu LY, Zong MH, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation[J]. Bioresource Technology, 99(16): 7881-7885, (2008).

DOI: 10.1016/j.biortech.2008.02.033

Google Scholar

[9] Angerbauer C, Siebenhofer M, Mittelbach M, Mittelbach M, Guebitz G M. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production[J]. Bioresource Technology, 99(8): 3051-3056, (2008).

DOI: 10.1016/j.biortech.2007.06.045

Google Scholar

[10] Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G. Lipid production by oleaginous Mucorales cultivated on renewable carbon sources[J]. European Journal Of Lipid Science And Technology, 109(11): 1060-1070, (2007).

DOI: 10.1002/ejlt.200700169

Google Scholar

[11] Xue FY, Miao JX, Zhang X, Luo H, Tan TW. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium [J]. Bioresource Technology, 99(13): 5923-5927, (2008).

DOI: 10.1016/j.biortech.2007.04.046

Google Scholar

[12] Gao CF, Zhai Y, Ding Y, Wu QY. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides[J]. Appl Energy, 87(3): 756–761, (2010).

DOI: 10.1016/j.apenergy.2009.09.006

Google Scholar

[13] Hsieh CH., Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation[J]. Bioresour Technol, 100(17): 3921–3926, (2009).

DOI: 10.1016/j.biortech.2009.03.019

Google Scholar

[14] Feng J, Li C, Zhang DW. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol, 102(1): 101–105, (2011).

DOI: 10.1016/j.biortech.2010.06.016

Google Scholar

[15] Araujo GS, Matos LJ, Goncalves LR, Fernandes FA, Farias WR. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains[J]. Bioresour Technol, 102(8): 5248–5250, (2011).

DOI: 10.1016/j.biortech.2011.01.089

Google Scholar

[16] Li YQ, Horsman M, Wang B, Wu N., Lan CQ. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans[J]. Appl Microbiol Biotechnol, 81(4): 629–636, (2008).

DOI: 10.1007/s00253-008-1681-1

Google Scholar

[17] Li YT, Han DX, Sommerfeld M, Hu QA. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions[J]. Bioresour Technol, 102(1): 123–1299, (2011).

DOI: 10.1016/j.biortech.2010.06.036

Google Scholar

[18] Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J]. Bioresource Technology, 98(16): 3000-3011, (2007).

DOI: 10.1016/j.biortech.2006.10.022

Google Scholar

[19] Birgit K, Patrick RG, Michael K. Biorefineries-Industrial Processes and Products[M]. WILEY-VCH, 64, (2006).

Google Scholar

[20] Huang C. Study on Lipid Fertertation on Lignocellulosic Hydrolysate by Trichosporon fermentans[D]. Guangzhou: South China University of Technology, (2011).

Google Scholar

[21] Li RF. Study on microbial oil production from bagasse hydrolysate by Trichosporon fermentans[D]. Guangzhou: South China University of Technology, (2010).

Google Scholar

[22] Economou, CN, Makri A, Aggelis G, Pavlou S, Vayenas DV. Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour, Technol. 101(4), 1385–1388, (2010).

DOI: 10.1016/j.biortech.2009.09.028

Google Scholar

[23] Lin H, Cheng W, Ding HT, Chen XJ, Zhou QF, Zhao YH. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation[J]. Bioresource Technology, 101(19): 7556-7562, (2010).

DOI: 10.1016/j.biortech.2010.04.027

Google Scholar

[24] Dai C, Tao J, Xie F, Dai Y, Zhao M. Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity[ J]. Biotechnol, 6(18): 2130–2134, (2007).

DOI: 10.5897/ajb2007.000-2331

Google Scholar

[25] Li YY. Study on Lipid Fertertation on Rice Hydrolysate by Trichosporon fermentans[D]. Guangzhou: South China University of Technology, (2011).

Google Scholar

[26] Peng F. Study on Microbial Oil Prodution by Fermentation of Lignocellulose Hydrolyzate[D]. Hunan: Hunan Agricultural University, (2009).

Google Scholar

[27] Li J. Lipid production with hemicellulosic hydrolysate by Rhodotorula glutin As2. 107[D]. Xian: Chang'an Univercity, (2008).

Google Scholar

[28] Zhang H, Pan AL, Xue DH. Production of microbial oils by high density fermentation of corn fiber[J]. CHINA OILS AND FATS, 7(37): 71-74, (2012).

Google Scholar

[29] Ruenwai R, Cheevadhanarak S., Laoteng K. Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha[J]. Mol Biotechnol, 42(3): 327–32, (2009).

DOI: 10.1007/s12033-009-9155-y

Google Scholar

[30] Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes[J]. Appl Microbiol Biotechnol, 97(1): 269–281, (2013).

DOI: 10.1007/s00253-012-4193-y

Google Scholar

[31] Evans CT, Ratledge C. Possible regulatory roles of ATP: citrate lyase, malic enzyme, and AMP deaminase in lipid accumulation by Rhodosporidium toruloides CBS 14. Can J Microbiol, 31(11): 1000–1005, (1992).

DOI: 10.1139/m85-189

Google Scholar

[32] Evans CT, Ratledge C. Possible regulatory roles of ATP: citrate lyase, malic enzyme, and AMP deaminase in lipid accumulation by Rhodosporidium toruloides CBS 14. Can J Microbiol. 31(11): 1000–1005, (1992).

DOI: 10.1139/m85-189

Google Scholar

[33] Kendrick A, Ratledge C. Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem. 209(2): 667–673, (1992).

DOI: 10.1111/j.1432-1033.1992.tb17334.x

Google Scholar

[34] Li Z, Sun HX, Mo XM, Li XY, Xu B, Tian P. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol, 97(11): 4927–4936, (2013).

DOI: 10.1007/s00253-012-4571-5

Google Scholar

[35] Meng X, Yang JM, Cao YJ, Li LZ, Jiang XL, Xu X, Liu W, Xian M, Zhang YW. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms[J] Journal Of Industrial Microbiology & Biotechnology, 38(8): 919–925, (2011).

DOI: 10.1007/s10295-010-0861-z

Google Scholar

[36] Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microb, 74(24): 7779–7789, (2008).

DOI: 10.1128/aem.01412-08

Google Scholar

[37] Wang JJ, Zhang BR, Chen SL. Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid[J]. Process Biochemistry, 46(7): 1436–1441, , (2011).

DOI: 10.1016/j.procbio.2011.03.011

Google Scholar

[38] Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF, Liden G. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast, 23(6): 455-464, (2006).

DOI: 10.1002/yea.1370

Google Scholar

[39] Yang XX. Genome-wide Study for Genes Involved in Furfural Tolerance in Saccharomyces cerevisiae. Tianjin: Tianjin University, (2012).

Google Scholar

[40] Lu X., Vora H., Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production[J]. Metab Eng, 10(6): 333–339, (2008).

DOI: 10.1016/j.ymben.2008.08.006

Google Scholar