Identification Parameters with Neural Network for Preisach Hysteresis Model

Article Preview

Abstract:

The description of hysteresis is one of the classical problems in magnetic materials. The progress in its solution determines the reliability of modeling and the quality of design of a wide range of devices, the proposed approach has been applied to model the behavior of many samples and the results show the robustness and efficiency of Neural Network to model the phenomenon of hysteresis loop. The goal of this study is to optimize the parameters of hysteresis Loop by Preisach model with the Neural Network, the method developed is based on an analysis of two distribution functions. The modified Lorentzian function and Gaussian function have been analyzed. The implemented software and performances of the distributions are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

487-493

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Preisach, Über die magnetische Nachwirkung, Z. Phys. Vol. 94, pp.277-302, (1935).

Google Scholar

[2] M. Krasnoselskii and A. Pokrovskii, Systems with Hysteresis, Nauka, Moscow, (1983).

Google Scholar

[3] Isaak D. Mayergoyz, Mathematical models of Hysteresis, IEEE Transactions On Magnetics, VOL. MAG-22, N°5, pp.603-608, SEP. (1986).

DOI: 10.1109/tmag.1986.1064347

Google Scholar

[4] D. Mayergoyz, Mathematical Models of Hysteresis, New York, Springer-Verlag, (1991).

Google Scholar

[5] A. Iványi, Hysteresis Models in Electromagnetic Computation, Budapest, Akadémia Kiadó, (1997).

Google Scholar

[6] J. Füzi, Mathematical Models of Magnetic Hysteresis and Their Implementation in Computer Codes Modelling Electromagnetic Systems, Doctoral Thesis, Transylvania University Brasov, (1997).

Google Scholar

[7] D. L. Atherton, B. Szpunar, and J. A. Szpunar, A new approach to Preisach diagrams, IEEE Trans. Magn., Vol. 23, 1987, p.1856–1865.

DOI: 10.1109/tmag.1987.1065172

Google Scholar

[8] R. M. Del Vecchio, An efficient procedure for modeling complex hysteresis processes in ferromagnetic materials, IEEE Trans. Magn., Vol. 16, 1980, p.809–811.

DOI: 10.1109/tmag.1980.1060680

Google Scholar

[9] Duong, I. D. Mayergoyz, On numerical implementation of hysteresis models, IEEE Trans. Magn., Vol. 21, 1985, p.1853–1855.

DOI: 10.1109/tmag.1985.1063923

Google Scholar

[10] Gy. Kádár, On the Preisach function of ferromagnetic hysteresis, J. Appl. Phys., vol. 61, 1987, p.4013–4015.

DOI: 10.1063/1.338563

Google Scholar

[11] Olaf Henze and Wolfgang M. Rucker Identification Procedures of Preisach Model, IEEE Transactions On Magnetics, Vol. 38, N° 2, pp.833-836, Mars (2002).

DOI: 10.1109/20.996215

Google Scholar

[12] G. Bertotti, Hysteresis in magnetism, Academic Press, Mai (1998).

Google Scholar

[13] Marc De Wulf et al. , Computation of the Preisach Distribution Function Based on a measured Everett Map, IEEE Ransactions On Agnetics, VOL. 36, N° 5, pp.3141-3143, Sep. (2000).

DOI: 10.1109/20.908713

Google Scholar

[14] Olaf Henze and Wolfgang M. Rucker Identification Procedures of Preisach Model, IEEE Transactions On Magnetics, Vol. 38, N° 2, pp.833-836, Mars (2002).

DOI: 10.1109/20.996215

Google Scholar

[15] Maurizio Cirincionne et al., A Novel Neural Approach to the Determination of the Distribution Function in Magnetic Preisach Systems, IEEE Transactions On Magnetics, Vol. 40, N° 4, Juil. (2004).

Google Scholar

[16] A. Ivanyi, Hysteresis models in Electromagnetic computation, Akadémiai Kiado, Budapest, (1997).

Google Scholar

[17] B. Muller J. Reinhardt, and M. T Strckland, Neural networks an introduction, Springer-verlang, Berlin Heidlberg, (1995).

Google Scholar

[18] H. Demuth and M. Beale, 《Neural network toolbox for use with Matlab》, Users guide, mathworks, (1997).

Google Scholar