The Floquet Analysis of Liquid Interface Wave in a Double-Frequency Excited Cylindrical Container

Article Preview

Abstract:

In generally cylindrical container, by the method of separation of variables solve the Laplace equation and linearized boundary conditions and obtain amplitude equation of double-frequency excitation fluid interface waves considering surface tension effects. We use double-layer single-frequency viscous fluid damping coefficient to modify the amplitude equation, and then analyze the instability of the new amplitude equation using Floquet theory. By numerical calculation, the instability region determined by different depths, excitation frequency, excitation amplitude, relatively amplitude factor, the phase difference and the surface tension is given. Moreover, the double-frequency excitation spectrum of double critical phenomena is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

505-513

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Faraday: Phil. Trans. R. Soc. Lond. vol. 52 (1831) , P. 319.

Google Scholar

[2] L. Rayleigh: Phil. Mag. vol. 16 (1883), p.50.

Google Scholar

[3] T.B. Benjamin and F. Ursell: Proc. R. Soc. Lond. A. vol. 225 (1954), p.505.

Google Scholar

[4] J. Miles and D. Henderson: Ann. Rev. Fluid Mech. vol. 22 (1990), p.143.

Google Scholar

[5] P.J. Holmes: J. Fluid Mech. vol. 162 (1986), p.365.

Google Scholar

[6] M. Umeki and T. Kambe: J. Phys. Soc. Jpn. vol. 58 (1989), p.140.

Google Scholar

[7] M. Nagata: J. Fluid Mech. vol. 209 (1989), p.265.

Google Scholar

[8] R. Keolian, L.A. Turkevich, S.J. Putterman, I. Rudnick and J.A. Rudnick: Phys. Rev. Lett. vol. 47 (1981), p.1133.

DOI: 10.1103/physrevlett.47.1133

Google Scholar

[9] J.P. Gollub and C.W. Meyer: Physica D: Nonlinear Phenomena vol. 6 (1983), p.337.

Google Scholar

[10] M. Umeki: J. Fluid Mech. vol. 227 (1991), p.161.

Google Scholar

[11] D. Henderson and J.W. Miles: J. Fluid Mech. vol. 213 (1990), p.95.

Google Scholar

[12] Y.J. Jian, X.Q. E, J. Zhang and J.M. Meng: Chin. phys. vol. 13 (2004), p. (2013).

Google Scholar

[13] Y.J. Jian, X.Q. E, J. Zhang and J.M. Meng: Chin. Phys. B, vol. 13 (2004), p.1623.

Google Scholar

[14] Y.J. Jian and X.Q. E: Chin. Phys. B, vol. 13 (2004), p.1631.

Google Scholar

[15] Y.J. Jian and X.Q. E: Chin. Phys. B, vol. 13 (2004). P. 1191.

Google Scholar

[16] M. Umeyama: J. Waterway Port Coastal Ocean Eng. vol. 128 (2002), p.133.

Google Scholar

[17] M. Umeyama: Tokyo Met. Univ. vol. 50 (2000), p.120.

Google Scholar

[18] K. Kumar and L. S. Tuckerman: J. Fluid Mech. vol. 279 (1994), p.49.

Google Scholar

[19] J. Beyer and R. Friedrich: Phys. Rev. E vol. 51 (1994), p.1162.

Google Scholar

[20] W.B. Zhang and J. Vinals: J. Fluid Mech. vol. 341 (1997), p.225.

Google Scholar

[21] T. Besson and W. Stuart Edwards: Phys. Rev. E vol. 54 (1996), p.507.

Google Scholar

[22] I. A, Nicolin and M. C. Raportaru: Physica A vol. 389 (2010), p.4663.

Google Scholar

[23] F. Kh. Abdullaev, M. Ő gren and M. P. Sørensen: Phy. Revi. A vol. 87 (2013), p.023616.

Google Scholar

[24] M. Hernández-Contreras: Phy. Revi. E vol. 88 (2013), p.062311.

Google Scholar

[25] Chen Weizhong and Wei Rongjue: Acta Phys. Sin., Vol. 48 (1999), P. 2259.

Google Scholar