Characterization of Si–C Covalent Bonding Fabricated between Single Carbon Nanotube and Si Substrate

Article Preview

Abstract:

The SiC covalent bonding between Carbon nanotube and Si substrate was fabricated by thermal vapor deposition using photolithography and gas blowing technology. Scanning electron microscopy, micro-Raman imaging and spectroscopy were used to investigate the interaction of individual CNTs and Si substrate. The characterization results showed that covalent bonds were formed between certain CNTs and Si substrate. Moreover, the reasons for the fabrication of SiC covalent bonding between CNTs and Si substrate were also proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3711-3715

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bockrath, J. Hone, A. Zettl, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, Phys. Rev. B Vol. 61 (2000) , p. R10606.

DOI: 10.1103/physrevb.61.r10606

Google Scholar

[2] H.J. Choi, J. Ihm, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. Vol. 84 (2000) , p.2917.

Google Scholar

[3] T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C.S. Jayanthi, M. Tang, S. -Y. Wu, Nature (London) Vol. 405 (2000) , p.769.

DOI: 10.1038/35015519

Google Scholar

[4] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. Vol. 73 (1998) , p.2447.

Google Scholar

[5] L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. Vol. 76 (1996) , p.971.

Google Scholar

[6] P.M. Albrecht, J.W. Lyding, Appl. Phys. Lett. Vol. 83 (2003) , p.5029.

Google Scholar

[7] A. Mews, F. Koberling, T. Basche, G. Philipp, G. S. Duesberg, S. Roth, and M. Burghard, Adv. Mater. Vol. 12 (2000) , p.1210.

DOI: 10.1002/1521-4095(200008)12:16<1210::aid-adma1210>3.0.co;2-m

Google Scholar

[8] Y. M. You, T. Yu, J. Kasim, H. Song, X. F. Fan, Z. H. Ni, L.Z. Cao, H. Jiang, D.Z. Shen, J. L. Kuo, and Z. X. Shen, Appl. Phys. Lett. Vol. 93 (2008) , p.103111.

DOI: 10.1063/1.2980402

Google Scholar

[9] H. Hiura, T. W. Ebbesen, K. Tanigaki, and H. Takahashi, Chem. Phys. Lett. Vol. 202 (1993) , p.509.

Google Scholar

[10] M. Oron-Carl, F. Hennrich, M. M. Kappes, H. V. Lohneysen, and R. Krupke, Arch. Hist. Exact Sci. Vol. 5(2005) , p.1761.

Google Scholar

[11] S. D. M. Brown, P. Corio, A. Marucci, M. A. Pimenta, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B Vol. 61 (2000) , p.7734.

DOI: 10.1103/physrevb.61.7734

Google Scholar

[12] J. Maultzsch, S. Reich, U. Schlecht, and C. Thomsen, Phys. Rev. Lett. Vol. 91 (2003) , p.087402.

Google Scholar

[13] C. Jiang, K. Kempa, J. Zhao, U. Schlecht, U. Kolb, T. Basch, M. Burghard, and A. Mews, Phys. Rev. B Vol. 66 (2002) , p.161404.

Google Scholar

[14] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, Science Vol. 265 (1994) , pp.635-639.

Google Scholar

[15] R. H. Miwa, W. Orellana and A. Fazzio, Appl. Phys. Lett. Vol. 86 (2005) , p.213111.

Google Scholar

[16] F. de Brito Mota and C. M. C. de Castilho, Phys. Rev. B Vol. 74 (2006) , p.165408.

Google Scholar

[17] H. L. Lai, N. B. Wong, X. T. Zhou, H. Y. Peng, C. K. Au, N. Wang, I. Bello, C. S. Lee, S. T. Lee, X. F. Duan, Appl. Phys. Lett. Vol. 76 (2000) , pp.294-296.

Google Scholar