[1]
B. De Filippo, L. Campanella, A. Brotzu, et al. Characterization of bronze corrosion products on exposition to sulphur dioxide[J]. Advanced Materials Research, 2010, 138(21): 21-28.
DOI: 10.4028/www.scientific.net/amr.138.21
Google Scholar
[2]
G. Giovannelli, S. Natali, L. Zortea, et al. An investigation into the surface layers formed on oxidised copper exposed to SO2 in humid air under hypoxic conditions. Corrosion Science, 2012, 57(8): 104-113.
DOI: 10.1016/j.corsci.2011.12.028
Google Scholar
[3]
Güray Kilinççeker, Nursen Taze, Hasan Galip, et al. The effect of sulfur dioxide on iron, copper and brass[J]. Anti-Corrosion Methods and Materials, 2011, 58(1): 4-12.
DOI: 10.1108/00035591111097648
Google Scholar
[4]
Chuanwei Yan, Yufan He, Haichao Lin, et al. Initial regularity and mechanism of copper corrosion in air containing SO2[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(5): 645-647.
Google Scholar
[5]
ERIKSSON P, JOHANSSON L-G, STRANDBERG H. Initial stages of copper corrosion in humid air containing SO2 and NO2[J]. Journal of Electrochemical Society, 1993, 140: 53-59.
DOI: 10.1149/1.2056109
Google Scholar
[6]
Jun Wu, Xianliang Zhou, Chaofang Dong, et al. The research progress of copper and copper alloy in atmospheric corrosion[J]. Corrosion Science And Protection Technology, 2010, 22(5): 464-465.
Google Scholar
[7]
TIDBLAD J, LEYGRAF C. Atmospheric corrosion effects of SO2 and NO2 a comparison of laboratory and field-exposed copper[J]. Journal of the Electrochemical Society, 1995, 142(3): 749-756.
DOI: 10.1149/1.2048529
Google Scholar
[8]
Jong-Sang Youn, Zhen Wang, Anna Wonaschutz, et al. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert [J]. Geophysi-cal Research Letters, 2013, 40(13): 3468-3472.
DOI: 10.1002/grl.50644
Google Scholar
[9]
WATANABE Masamitsu, HIGASHI Yasuhiro, Tohru Tanaka. Differences between corrosion products formed on copper exposed in Tokyo in summer and winter[J]. Corrosion Science, 2003, 45: 1439-1453.
DOI: 10.1016/s0010-938x(02)00245-7
Google Scholar
[10]
Cora C. Wohlgemuth-Ueberwasser. Sulfide oxidation as a process for the formation of copper -rich magmatic sulfides [J]. Miner Deposita, 2013, 48(7): 115-127.
DOI: 10.1007/s00126-012-0420-9
Google Scholar
[11]
STRANDBERG H. Reaction of copper patina compounds: ⅡInfluence of sodium chloride in the presence of some air pollutants[J]. Atmospheric Environment, 1998, 32(20): 3521-3526.
DOI: 10.1016/s1352-2310(98)00058-2
Google Scholar
[12]
LEYGRAF C, GRAEDEL T E. Atmospheric Corrosion[M]. New York: John Wiley& Sons, Inc., (2000).
Google Scholar
[13]
KRÄTSCHMER A, ODNEVALL WALLINDER I, LEYGRAF C. The evolution of outdoor copper patina[J]. Corrosion Science, 2002, 44: 425-450.
DOI: 10.1016/s0010-938x(01)00081-6
Google Scholar
[14]
JOUEN S, JEAN M, HANNOYER B. Simultaneous copper runoff and copper surface analysis in an outdoor area[J]. Surface and Interface Analysis, 2000, 30: 145-148.
DOI: 10.1002/1096-9918(200008)30:1<145::aid-sia825>3.0.co;2-c
Google Scholar
[15]
Shaodong Sun, Yuexia Sun, Xiaozhe Zhang, et al. A surfactant-free strategy for controllable growth of hierarchical copper oxide nanostructures[J]. CystEngComm, 2013(26): 62-65.
DOI: 10.1039/c3ce40522b
Google Scholar
[16]
Arne H. Zittlau, Quan Shi, Juliana Boerio-Goates, et al. Thermodynamics of the basic copper sulfates antlerite, posnjakite, and brochantite[J]. Chemie der Erde-Geochemistry, 2013, 73(1): 39-50.
DOI: 10.1016/j.chemer.2012.12.002
Google Scholar
[17]
Honghua Ge, Fei Song, Ruifeng Guo et al. Study of the corrosion of copper in air containing sulfur dioxide[J]. Journal of Shanghai University of Electric Power, 2010, 26(6): 577-580.
Google Scholar