[1]
F. Jordina, D.B. Maria, S. Santiago. The influence of deformation-induced martensitic transformations on the mechanical properties of nanocomposite Cu-Zr-(Al) systems [J]. Advanced Engineering Materials 13 (2011) 57-63.
DOI: 10.1002/adem.201000169
Google Scholar
[2]
W.N. Jittraporn, K. Megumi, L. Terence G. Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion [J]. Journal of Materials Science 47 (2012) 7782-7788.
DOI: 10.1007/s10853-012-6587-8
Google Scholar
[3]
M. Azimi, G.H. Akbari. Development of nano-structure Cu-Zr alloys by the mechanical alloying process [J]. Journal of Alloys and Compounds 509 (2011) 27-32.
DOI: 10.1016/j.jallcom.2010.08.071
Google Scholar
[4]
J.Q. Deng, Y.C. Wu, F.W. Yu, D.G. Wang. Microstructure and properties of powder metallurgy Cu-Zr alloys [J]. Rare Metal Materials and Engineering 38 (2009) 205-208.
Google Scholar
[5]
H. Kimura, A. Inoue, N. Muramatsu, K. Shin, T. Yamamoto1. Ultrahigh strength and high electrical conductivity characteristics of Cu-Zr alloy wires with nanoscale duplex fibrous structure [J]. Materials Transactions, 47 (2006) 1595-1598.
DOI: 10.2320/matertrans.47.1595
Google Scholar
[6]
L. Arnberg, U. Backmark, N. Bäckström, J. Lange. A new high strength, high conductivity Cu-0. 5wt. %Zr alloy produced by rapid solidification technology [J]. Materials Science and Engineering 83 (1986) 115-121.
DOI: 10.1016/0025-5416(86)90178-3
Google Scholar
[7]
S. Sun, S. Sakai , H.G. Suzuki. Effect of alloying elements on the cold deformation behavior of Cr phase and the tensile strength of Cu-15Cr based in situ composites [J]. Materials Transactions 42 (2001) 1007-1014.
DOI: 10.2320/matertrans.42.1007
Google Scholar
[8]
J. Stobrawa, L. Ciura, Z. Rdzawski. Rapidly solidified strips of Cu-Cr alloys [J]. Scripta Materialia 34 (1996) 1759-1763.
DOI: 10.1016/1359-6462(96)00053-x
Google Scholar
[9]
I.S. Batra, G.K. Dey. Microstructure and properties of a Cu-Cr-Zr alloy [J]. Journal of Nuelear Materials 299 (2000) 91-100.
Google Scholar
[10]
Uwe Holzwarth, Hermann Stamm. The Precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic Pressing [J]. Journal of Nuclear Materials 279 (2000) 31-45.
DOI: 10.1016/s0022-3115(99)00285-8
Google Scholar
[11]
F.X. Huang. Analysis of phases in a Cu-Cr-Zr alloy [J]. Scripta Materialia 48 (2003) 97-102.
Google Scholar
[12]
C.D. Xia, Y.L. Jia, W. Zhang, K. Zhang, Q.Y. Dong, G.Y. Xu, M.P. Wang. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments [J]. Materials and Design 39 (2012): 404-409.
DOI: 10.1016/j.matdes.2012.03.003
Google Scholar
[13]
H.F. Xie, X.J. Mi, G.J. Huang, B.D. Gao, X.Q. Yin, Y.F. Li. Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy [J]. Rare Metals 30 (2011) 650-656.
DOI: 10.1007/s12598-011-0444-9
Google Scholar
[14]
G.B. Lin, Z.D. Wang, M.K. Zhang, H. Zhang, M. Zhao. Heat treatment method for making high strength and conductivity Cu-Cr-Zr alloy [J]. Materials Science and Technology 27 (2011) 966-969.
DOI: 10.1179/026708310x12815992418210
Google Scholar
[15]
E. Batawi. Thermo-mechanical processing of spray-formed Cu-Cr-Zr Alloy [J]. Scriptia Metallurgy Materials 29 (1993) 765-771.
Google Scholar
[16]
M. Appello, P. Fenici. Solution heat treatment of a Cu-Cr-Zr alloy [J]. Materials Science and Engineering A 102 (1988) 69-75.
DOI: 10.1016/0025-5416(88)90534-4
Google Scholar