Control of Synchronization on Community Networks

Article Preview

Abstract:

Synchronization of coupled oscillators on networks has been investigated in a wide range of topologies. One of the major challenges is how to control the synchronization process through network structures. In this paper, we study the control of network synchronization by considering the mixing regions of different modules in networks. It is shown that small or weak mixing parts on module networks may hinder the synchronization of the whole network while large and strong mixing parts may accelerate synchronization. Our findings indicate that mesoscopic structures should be of importance to controlling network synchronization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1454-1459

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. -U. Hwang, Complex networks: structureand dynamics, Phys. Rep., 424 (2006) 175.

DOI: 10.1016/j.physrep.2005.10.009

Google Scholar

[2] X. Jiang, H. Wang, S. Tang, L. Ma, Z. Zhang, Z. Zheng, A new approach to shortest paths on networks based on the quantum bosonic mechanism, New J. Phys, 13 (2011) 013022.

DOI: 10.1088/1367-2630/13/1/013022

Google Scholar

[3] I. Kanter, M. Zigzag, A. Englert, F. Geissler, W. Kinzel, Synchronization of unidirectional time delay chaotic networks and the greatest common divisor, EPL, 93(2011) 60003.

DOI: 10.1209/0295-5075/93/60003

Google Scholar

[4] L. Prignano, A. Díaz-Guilera, Extracting topological features from dynamical measures in networks of kuramoto oscillators, Phys. Rev. E, 85 (2012) 036112.

DOI: 10.1103/physreve.85.036112

Google Scholar

[5] M. Porfiri, A Master Stability Function for Stochastically Coupled Chaotic Maps, EPL, 96(2004)40014.

DOI: 10.1209/0295-5075/96/40014

Google Scholar

[6] F. Dörfer, M. Chertkov, F. Bullo, Synchronization in complex oscillator networks and smart grids, Proc. Natl. Acad. Sci. U.S.A., 110 (2013) (2005).

DOI: 10.1073/pnas.1212134110

Google Scholar

[7] M. Barahona, L.M. Pecora, Synchronization in small-world systems, Phys. Rev. Lett., 89 (2002) 054101.

Google Scholar

[8] T. Nishikawa, A. E. Motter, Y. C. Lai, F. C. Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?, Phys. Rev. Lett., 91(2003)014101.

DOI: 10.1103/physrevlett.91.014101

Google Scholar

[9] C. Grabow, S.M. Hill, S. Grosskinsky, M. Timme, Do small worlds synchronize fastest?, EPL, 90 (2010) 48002.

DOI: 10.1209/0295-5075/90/48002

Google Scholar

[10] Gómez-Gardeñes J., Moreno Y., Arenas A. Paths to Synchronization on Complex Networks, Phys. Rev. Lett., 2007. 98, p.034101.

DOI: 10.1103/physrevlett.98.034101

Google Scholar

[11] Y. Moreno, A. F. Pacheco, Synchronization of Kuramoto oscillators in scale-free networks, EPL, 68(2004)603.

DOI: 10.1209/epl/i2004-10238-x

Google Scholar

[12] A. Arenas, A. Díaz-Guilera, C. J. Pérez-Vicente, Synchronization Reveals Topological Scales in Complex Networks, Phys. Rev. Lett., 96(2006)114102.

DOI: 10.1103/physrevlett.96.114102

Google Scholar

[13] S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, A. Rapisarda. Detecting complex network modularity by dynamical clustering, Phys. Rev. E, 75 (2007) 045102.

DOI: 10.1103/physreve.75.045102

Google Scholar

[14] V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, V. Latora, Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110 (2013) 174102.

DOI: 10.1103/physrevlett.110.174102

Google Scholar

[15] T. Dal'Maso Peron, F. Rodrigues, J. Kurths, Synchronization in clustered random networks, Phys. Rev. E, 87 (2013) 032807.

DOI: 10.1103/physreve.87.032807

Google Scholar

[16] K. Park, Y. C. Lai, S. Gupte, J. W. Kim, Synchronization in complex networks with a modular structure, Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(2006)015105.

DOI: 10.1063/1.2154881

Google Scholar

[17] E. Oh, K. Rho, H. Hong, B. Kahng, Modular synchronization in complex networks. Physical Review E, 72(2005) 047101.

DOI: 10.1103/physreve.72.047101

Google Scholar

[18] Z. Zheng, X. Feng, B. Ao, M. C. Cross, Synchronization of groups of coupled oscillators with sparse connections, EPL, 87(2009)50006.

DOI: 10.1209/0295-5075/87/50006

Google Scholar

[19] A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical Review E, 78(2008)046110.

DOI: 10.1103/physreve.78.046110

Google Scholar

[20] J. Gómez-Gardeñes, S. Gómez, A. Arenas, Y. Moreno, Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106 (2011) 128701.

DOI: 10.1103/physrevlett.106.128701

Google Scholar

[21] J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, et al. The Kuramoto model: a simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005) 137.

DOI: 10.1103/revmodphys.77.137

Google Scholar