[1]
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. -U. Hwang, Complex networks: structureand dynamics, Phys. Rep., 424 (2006) 175.
DOI: 10.1016/j.physrep.2005.10.009
Google Scholar
[2]
X. Jiang, H. Wang, S. Tang, L. Ma, Z. Zhang, Z. Zheng, A new approach to shortest paths on networks based on the quantum bosonic mechanism, New J. Phys, 13 (2011) 013022.
DOI: 10.1088/1367-2630/13/1/013022
Google Scholar
[3]
I. Kanter, M. Zigzag, A. Englert, F. Geissler, W. Kinzel, Synchronization of unidirectional time delay chaotic networks and the greatest common divisor, EPL, 93(2011) 60003.
DOI: 10.1209/0295-5075/93/60003
Google Scholar
[4]
L. Prignano, A. Díaz-Guilera, Extracting topological features from dynamical measures in networks of kuramoto oscillators, Phys. Rev. E, 85 (2012) 036112.
DOI: 10.1103/physreve.85.036112
Google Scholar
[5]
M. Porfiri, A Master Stability Function for Stochastically Coupled Chaotic Maps, EPL, 96(2004)40014.
DOI: 10.1209/0295-5075/96/40014
Google Scholar
[6]
F. Dörfer, M. Chertkov, F. Bullo, Synchronization in complex oscillator networks and smart grids, Proc. Natl. Acad. Sci. U.S.A., 110 (2013) (2005).
DOI: 10.1073/pnas.1212134110
Google Scholar
[7]
M. Barahona, L.M. Pecora, Synchronization in small-world systems, Phys. Rev. Lett., 89 (2002) 054101.
Google Scholar
[8]
T. Nishikawa, A. E. Motter, Y. C. Lai, F. C. Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?, Phys. Rev. Lett., 91(2003)014101.
DOI: 10.1103/physrevlett.91.014101
Google Scholar
[9]
C. Grabow, S.M. Hill, S. Grosskinsky, M. Timme, Do small worlds synchronize fastest?, EPL, 90 (2010) 48002.
DOI: 10.1209/0295-5075/90/48002
Google Scholar
[10]
Gómez-Gardeñes J., Moreno Y., Arenas A. Paths to Synchronization on Complex Networks, Phys. Rev. Lett., 2007. 98, p.034101.
DOI: 10.1103/physrevlett.98.034101
Google Scholar
[11]
Y. Moreno, A. F. Pacheco, Synchronization of Kuramoto oscillators in scale-free networks, EPL, 68(2004)603.
DOI: 10.1209/epl/i2004-10238-x
Google Scholar
[12]
A. Arenas, A. Díaz-Guilera, C. J. Pérez-Vicente, Synchronization Reveals Topological Scales in Complex Networks, Phys. Rev. Lett., 96(2006)114102.
DOI: 10.1103/physrevlett.96.114102
Google Scholar
[13]
S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, A. Rapisarda. Detecting complex network modularity by dynamical clustering, Phys. Rev. E, 75 (2007) 045102.
DOI: 10.1103/physreve.75.045102
Google Scholar
[14]
V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, V. Latora, Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110 (2013) 174102.
DOI: 10.1103/physrevlett.110.174102
Google Scholar
[15]
T. Dal'Maso Peron, F. Rodrigues, J. Kurths, Synchronization in clustered random networks, Phys. Rev. E, 87 (2013) 032807.
DOI: 10.1103/physreve.87.032807
Google Scholar
[16]
K. Park, Y. C. Lai, S. Gupte, J. W. Kim, Synchronization in complex networks with a modular structure, Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(2006)015105.
DOI: 10.1063/1.2154881
Google Scholar
[17]
E. Oh, K. Rho, H. Hong, B. Kahng, Modular synchronization in complex networks. Physical Review E, 72(2005) 047101.
DOI: 10.1103/physreve.72.047101
Google Scholar
[18]
Z. Zheng, X. Feng, B. Ao, M. C. Cross, Synchronization of groups of coupled oscillators with sparse connections, EPL, 87(2009)50006.
DOI: 10.1209/0295-5075/87/50006
Google Scholar
[19]
A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical Review E, 78(2008)046110.
DOI: 10.1103/physreve.78.046110
Google Scholar
[20]
J. Gómez-Gardeñes, S. Gómez, A. Arenas, Y. Moreno, Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106 (2011) 128701.
DOI: 10.1103/physrevlett.106.128701
Google Scholar
[21]
J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, et al. The Kuramoto model: a simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005) 137.
DOI: 10.1103/revmodphys.77.137
Google Scholar