Growth of Zinc Oxide Nanostructures on Electrochemically-Etched p-Type Silicon(100) Substrate by Chemical Bath Deposition Method

Article Preview

Abstract:

ZnO nanostructures were successfully grown on electrochemically etched p-type Si (100) substrate via chemical bath deposition method under basic solution. These nanostructures are characterized through scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS) and ultraviolet-visible spectroscopy (UV-Vis). SEM results revealed that the density of the ZnO nanorods can be controlled by changing the surface morphology of the substrate via electrochemical etching process. At around 200-400 nm, the reflectance intensity of ZnO is significantly decreased as the density of the nanorods increases. Discussion on the possible growth mechanism of ZnO on etched Si during deposition is also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

358-362

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Ozgur, et al., J. Appl. Phys. 98, 041301 (2005).

Google Scholar

[2] V.A. Karpina, et. al., Cryst. Res. Technol. 39, 980-992 (2004).

Google Scholar

[3] A. Janotti and C.G. Van de Walle, Rep. Prog. Phys. 72, 1 (2009).

Google Scholar

[4] Zhong Lin Wang, J. Phys.: Condens. Matter 16, R847 (2004).

Google Scholar

[5] X. Wang, et. al., NSTI-Nanotech. 4 526-529 (2007).

Google Scholar

[6] Cai-feng Wang, Bo Hu, Hou-hui Yi, Optik 123, 1040 (2012).

Google Scholar

[7] Min Su Kim, et al., Current Applied Physics 12, S94-S98 (2012).

Google Scholar

[8] Hong Cai, et al., Journal of Physics and Chemisty of Solids 70, 967-971 (2009).

Google Scholar

[9] Sukumar Basu and Jayita Kanungo (2011). Nanocrystalline Porous Silicon, Crystalline Silicon - Properties and Uses, Prof. Sukumar Basu (Ed. ), ISBN: 978-953-307-587-7, InTech.

DOI: 10.5772/23355

Google Scholar

[10] K.A. Salman, K. Omar, Z. Hassan, Superlattices and Microstructures 50, 517-528 (2011).

Google Scholar

[11] Fuchao Yang, et al., Superlattices and Microstructures 50, 210-220 (2012).

Google Scholar

[12] M. Rajabi, R.S. Dariani, A. Iraji Zad, Sensors and Actuators A 180, 11-14 (2012).

DOI: 10.1016/j.sna.2012.04.003

Google Scholar

[13] H. I. Abdulgafour, et al., Journal of Alloys and Compounds 509, 5627-5630 (2011).

Google Scholar

[14] G. Hodes, Chemical Solution Deposition of Semiconductor Films, Marcel Dekker Inc., (2002).

Google Scholar

[15] R. Shabannia, H. Abu Hassan, Matters Letters 98, 135-137 (2013).

Google Scholar

[16] T. Park, et al., Bull. Korean Chem. Soc. 34 1779-1782 (2013).

Google Scholar

[17] M. S. Kim , et al., Electronic Materials Letters 8, 75-80 (2012).

Google Scholar

[18] R. Shabannia, H. Abu Hassan, Superlattices and Microstructures 62, 242-250 (2013).

Google Scholar

[19] S. Xu and Z. Wang, One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties, Nano Res. DOI 10. 1007/s12274-011-0160-7. Tsinghua University Press and Springer-Verlag Berlin Heidelberg (2011).

Google Scholar

[20] Sukumar Basu and Jayita Kanungo (2011). Nanocrystalline Porous Silicon, Crystalline Silicon - Properties and Uses, Prof. Sukumar Basu (Ed. ), ISBN: 978-953-307-587-7, InTech.

DOI: 10.5772/23355

Google Scholar