Key Substitution Attack and Malleability of a Short Signature Scheme with Batch Verification

Article Preview

Abstract:

At IWSEC 2008, F. Guo et al. proposed an efficient short signature scheme with batch verification based on C. Gentry’s scheme. In this paper, we firstly propose the key substitution attack on F. Guo et al.’s digital signature scheme and show that the malicious adversary can forge a valid signature, which can be verified with a substituted public key. Secondly, we prove that F. Guo et al.’s scheme is malleable and the attacker can produce a new valid signature on the message if he/she has known some valid signatures on the same message.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1605-1608

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Menezes and N. Smart: Security of signature schemes in a multiuser setting, Designs Codes and Cryptography, Vol. 33, no. 3 (2004), pp.261-274.

DOI: 10.1023/b:desi.0000036250.18062.3f

Google Scholar

[2] S. Blake-Wilson and A. Menezes: Unknown key-share attacks on the station-to-station (STS) protocol, In: Public Key Cryptography – PKC 1999, Lecture Notes in Computer Science, Vol. 1560, Springer-Verlag (1999), pp.154-170.

DOI: 10.1007/3-540-49162-7_12

Google Scholar

[3] C. H. Tan: Key Substitution Attacks on Some Provably Secure Signature Schemes, IEICE Transactions on Fundamentals, Vol. E87-A, no. 1 (2004), pp.1-2.

DOI: 10.1093/ietfec/e88-a.2.611

Google Scholar

[4] C. H. Tan: Key substitution attacks on provably secure short signature schemes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E88-A, no. 2 (2005), pp.611-612.

DOI: 10.1093/ietfec/e88-a.2.611

Google Scholar

[5] C. H. Tan: On Waters' Signature Scheme, IEICE Transactions on Fundamentals, Vol. E89-A, no. 10 (2006), pp.2684-2685.

DOI: 10.1093/ietfec/e89-a.10.2684

Google Scholar

[6] Jens-Matthias Bohli, Stefan Rohrich and Rainer Steinwandt: Key substitution attacks revisited: Taking into account malicious signers, International Journal of Information Security, no. 5 (2006), pp.30-36.

DOI: 10.1007/s10207-005-0071-2

Google Scholar

[7] A. Fiat: Batch RSA, In: CRYPTO 1989, Lecture Notes in Computer Science, Vol. 435, Springer, Heidelberg (1990), p.175–185.

DOI: 10.1007/0-387-34805-0_17

Google Scholar

[8] M. Bellare, J. Garay and T. Rabin: Fast batch verification for modular exponentiation and digital signatures, In: EUROCRYPT 1998, Lecture Notes in Computer Science, Vol. 1403, Springer, Heidelberg (1998), p.236–250.

DOI: 10.1007/bfb0054130

Google Scholar

[9] J. Camenisch, S. Hohenberger and M. Pedersen: Batch Verification of Short Signatures, In: EUROCRYPT 2007, Lecture Notes in Computer Science, Vol. 4515, Springer, Heidelberg (2007), p.246–263.

DOI: 10.1007/978-3-540-72540-4_14

Google Scholar

[10] C. Gentry: Practical Identity-Based Encryption Without Random Oracles, In: EUROCRYPT 2006, Lecture Notes in Computer Science, Vol. 4004, Springer, Heidelberg (2006), p.445–464.

DOI: 10.1007/11761679_27

Google Scholar

[11] Fuchun Guo, Yi Mu and Zhide Chen: Efficient Batch Verification of Short Signatures for a Single-Signer Setting without Random Oracles, In: IWSEC 2008, Lecture Notes in Computer Science, Vol. 5312, Springer, Heidelberg (2008), p.49–63.

DOI: 10.1007/978-3-540-89598-5_4

Google Scholar