Topology Optimization Design of Implantable Energy Harvesting Device

Article Preview

Abstract:

When designing implantable biomedical MEMS devices, we must provide electric power source with long life and small size to drive the sensors and actuators work. Obviously, traditional battery is not a good choice because of its large size, limited lifetime and finite power storage. Living creatures all have non-electric energy sources, like mechanical energy from heart beat and pulse. Piezoelectric structure can convert mechanical energy to electric energy. In the same design condition, the more electric energy is generated, the better the piezoelectric structure design. This paper discusses the topology optimization method for the most efficient implantable piezoelectric energy harvesting device. Finally, a design example based on the proposed method is given and the result is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

498-503

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.H. Ko, Power sources for implant telemetry and stimulation systems, in A Handbook on Biotelemetry and Radio Tracking, C. J. Amlaner and D. MacDonald, Eds. Elmsford, NY: Pergamon Press, Inc., 1980, pp.225-245.

DOI: 10.1016/b978-0-08-024928-5.50029-4

Google Scholar

[2] B.E. Lewandowski, K. L. Kilgore and K. J. Gustafson, Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power, Ann. Biomed. Eng., vol. 35, pp.631-641, (2007).

DOI: 10.1007/s10439-007-9261-6

Google Scholar

[3] J.A. Potkay, K. Brooks, An Arterial Cuff Energy Scavenger For Implanted Microsystems, In Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on (2008), pp.1580-1583.

DOI: 10.1109/icbbe.2008.723

Google Scholar

[4] M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, pp.197-224, (1988).

DOI: 10.1016/0045-7825(88)90086-2

Google Scholar

[5] E.C.N. Silva, S. Nishiwaki and N. Kikuchi, Design of piezocomposite materials and piezoelectric transducers using topology optimization-Part II, Arch. Comput. Methods Eng., 6, pp.191-222, (1999).

DOI: 10.1007/bf02896423

Google Scholar

[6] S.Y. Wang, K. Tai and S.T. Quek, Topology optimization of piezoelectric sensors / actuators for torsional vibration control of composite plates, Smart Mater. Struct. 15(2), pp.253-69, (2006).

DOI: 10.1088/0964-1726/15/2/004

Google Scholar

[7] M. Kogl, E.C.N. Silva, Topology optimization of smart structures: design of piezoelectric plate and shell actuators, Smart Mater. Struct. 14(2), pp.387-99, (2005).

DOI: 10.1088/0964-1726/14/2/013

Google Scholar

[8] B. Zheng, C. Chang, and H.C. Gea, Design of piezoelectric actuator with in-plane motion using topology optimization, ASME Int. Design Engineering Technology Conf. (Las Vegas, Nevada) p.34976, (2007).

DOI: 10.1115/detc2007-34976

Google Scholar

[9] A. Kasyap, J. Lim, K.D.T. Ngo, A. Kurdila, T. Nishida, M. Sheplak and L. Cattafesta, Energy reclamation from a vibrating piezoceramic composite beam, Proc. of 9th Int. Cong. on Sound and Vibration (Orlando, Florida), (2002).

Google Scholar

[10] H.F. Tiersten, Linear piezoelectric plate vibrations; elements of the linear theory of piezoelectricity and the vibrations of piezoelectric plates, 1969, (New York: Plenum Press).

DOI: 10.1007/978-1-4899-6453-3_5

Google Scholar

[11] M.P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1, pp.193-202, (1989).

Google Scholar

[12] B. Zheng, C. Chang, and H.C. Gea, Topology optimization of energy harvesting devices using piezoelectric materials, Struct. Multidisc. Optim., 38, pp.17-23, (2009).

DOI: 10.1007/s00158-008-0265-0

Google Scholar