Vibration of Diatomic System in One-Dimensional Nanomaterials

Article Preview

Abstract:

By means of the hypergeometric series method, the explicit expressions of energy eigenvalues and eigenfunctions of bound states for a diatomic system with a hyperbolic potential function are obtained in the one-dimensional nanomaterials. The eigenfunctions of a one-dimensional diatomic system, expressed in terms of the Jacobi polynomial, are employed as an orthonormal basis set, and the analytic expressions of matrix elements for position and momentum operators are given in a closed form.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

545-549

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Nemanic: Appl. Phys. Lett. Vol. 82 (2003), p.4573.

Google Scholar

[2] M.H. Zhao and Z.L. Wang: Nano. Lett. Vol. 4 (2004), p.587.

Google Scholar

[3] Y.H. Chen, J.W. Dong, and H.Z. Wang: J. Opt. Soc. Am. B Vol. 23 (2006), p.776.

Google Scholar

[4] P.M. Morse: Phys. Rev. Vol. 34 (1929), p.57.

Google Scholar

[5] J.N. Murrell, S. Carter, and S.C. Faranlos: Molecular Potential Energy Functions (John Wiley and Sons, Chichester 1984).

Google Scholar

[6] S. Yang and M.E. Kellman: Phys. Rev. A Vol. 65 (2002), p.034103.

Google Scholar

[7] F. Lu, C. Chen and D. Sun: Chin. Phys. Vol. 14 (2005), p.463.

Google Scholar

[8] O.I. Tolstikhin and M. Matsuzawa: Phys. Rev. A Vol. 63 (2001), p.062705.

Google Scholar

[9] D. Schiöberg: Mol. Phys. Vol. 59 (1986), p.1123.

Google Scholar

[10] R. Wallace: Chem. Phys. Lett. Vol. 37 (1976), p.115.

Google Scholar

[11] M.L. Sage: Chem. Phys. Vol. 35 (1978), p.375.

Google Scholar

[12] M. Abramowitz and I.A. Stegun: 1972 Handbook of Mathematical Functions (Dover, New York 1972).

Google Scholar