Field-Enhancement Factor of a Carbon Nanotube Cold Cathode Triode

Article Preview

Abstract:

To estimate the field-enhancement factor, the model system of floated sphere in triode configuration of the carbon nanotube was proposed, and the actual electric field and field-enhancement factor at the apex of carbon nanotube were calculated with the image charge method analytically. The field-enhancement factor given as β=3+ρ+W, where ρ is the aspect ratio of the carbon nanotube, and W is the function of geometrical parameters and the anode and gate voltages. The geometrical parameters affects the field-enhancement factor very much, such as the field-enhancement factor decreased rapidly with the increasing of top radius of carbon nanotube, gate-cathode distance and gate-hole size. The field-enhancement factor could be improved via concocting the gate-electrode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-262

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ijima, Nature (London). 354, 56 (1991).

Google Scholar

[2] S. Ijima and T. Ichihashi, Nature (London). 363, 603 (1993).

Google Scholar

[3] W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, P. Legagneux, G. Pirio, V. T. Binh, and V. Semet, Curr. Appl. Phys. 2, 509 (2002).

DOI: 10.1016/s1567-1739(02)00166-9

Google Scholar

[4] W. Zhua, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Appl. Phys. Lett. 75, 873 (1999).

Google Scholar

[5] G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology. 13, 1 (2002).

DOI: 10.1088/0957-4484/13/1/301

Google Scholar

[6] P. N. Minh, L. T. T. Tuyen, T. Ono, H. Miyashita, Y. Suzuki, H. Mimura, and M. Esashi, J. Vac. Sci. Technol. B 21, 1705 (2003).

DOI: 10.1116/1.1580115

Google Scholar

[7] W. A. D. Heer, A. Chaˇtelain, and D. Ugarte, Science. 270, 1179 (1995).

Google Scholar

[8] P. G. Collins and A. Zettl, Phys. Rev. B 55, 9391 (1997).

Google Scholar

[9] K. B. K. Teo, M. Chhowalla, G. A. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, D. Pribat, and D. G. Hasko, Appl. Phys. Lett. 80, 2011 (2002).

DOI: 10.1063/1.1461868

Google Scholar

[10] X. Q. Wang, M. Wang, Z. H. Li, Y. B. Xu, and P. M. He, Ultramicroscopy. 102, 181 (2005).

Google Scholar

[11] S. H. Lim, H. S. Yoon, J. H. Moon, K. C. Park, J. Jang, Appl. Phys. Lett. 87, 243106 (2005).

Google Scholar

[12] J. C. Shi, S. Z. Deng, N. S. Xu, R. H. Yao, J. Chen, Appl. Phys. Lett. 88, 013112(2006).

Google Scholar

[13] Y. C. Lan, C. T. Lee, Y. Hu, S. H. Chen, C. C. Lee, B. Y. Tsui, and T. L. Lin, J. Vac. Sci. Technol. B 22, 1244 (2004).

Google Scholar

[14] D. Nicolaescu, V. Filip, S. Kanemaru, and J. Itoh, J. Vac. Sci. Technol. B 21, 366 (2003).

Google Scholar

[15] A. A. G. Driskill-Smith, D. G. Hasko, and H. Ahmed, J. Vac. Sci. Technol. B 18, 3481 (2000).

Google Scholar

[16] D. Lei, L. Y. Zeng, and W. B. Wang, J. Q. Liang, J. Appl. Phys. 102, 114503 (2007).

Google Scholar

[17] Da. Lei, W. B. Wang, L. Y. Zeng, and J. Q. Liang, J. Vac. Sci. Technol. B 27(5), 2217 (2009).

Google Scholar

[18] D. Nicolaescu, J. Vac. Sci. Technol. B 13, 531 (1995).

Google Scholar

[19] Miller H C, J. Appl. Phys. 38, 1450 (1967).

Google Scholar

[20] X. Zheng, G. H. Chen, Z. B. Li, S. Z. Deng, and N. S. Xu, Phys. Rev. Lett. 92, 106803 (2004).

Google Scholar

[21] A. Buldum and J. P. Lu, Phys. Rev. Lett. 91, 236801 (2003).

Google Scholar

[22] Richard G. Forbes, C. J. Edgcombe, and U. Valdr, Ultramicroscopy. 95, (1928).

Google Scholar

[23] R. H. Fowler, and D. L. Nordheim, Proc. Roy. Soc. (London) Ser. A 119, 173 (2003).

Google Scholar