[1]
E. Livne and T. A. Weisshaar, Aeroelasticity of nonconventional airplane configurations-past and future, Journal of Aircraft, 40(6), 1047–1065, (2003).
DOI: 10.2514/1.2273
Google Scholar
[2]
H. Ogawa and R. R. Boyce, Physical insight into scramjet inlet behavior via multi-objective design optimization, AIAA Journal, 50(8), 1773–1783, (2012).
DOI: 10.2514/1.j051644
Google Scholar
[3]
I. Garrick, A survey of aerothermoelasticity, Aerospace Engineering, 22, 140–147, (1963).
Google Scholar
[4]
D. Ellis, Overview-design of an efficient lightweight airframe structure for the national aerospace plane, Structures, Structural Dynamics and Materials Conference, (1989).
DOI: 10.2514/6.1989-1406
Google Scholar
[5]
D. R. Tenney, W. B. Lisagor, and S. C. Dixon, Materials and structures for hypersonic vehicles, Journal of Aircraft, 26(11), 953–970, (1989).
DOI: 10.2514/3.45868
Google Scholar
[6]
J. M. Jenkins and R. D. Quinn, A historical perspective of the YF-12A thermal loads and structures program, NASA TM-104317, 8–11, (1996).
Google Scholar
[7]
J. J. McNamara, P. P. Friedmann, K. G. Powell, B. J. Thuruthimattam, and R. E. Bartels, Aeroelastic and aerothermoelastic behavior in hypersonic flow, AIAA Journal, 46(10), 2591–2610, (2008).
DOI: 10.2514/1.36711
Google Scholar
[8]
H. L. Runyan, Effect of Aerodynamic Heating on the Flutter of a Rectangular Wing at a Mach Number of 2, NASA, TN 460, (1960).
Google Scholar
[9]
J. Heeg, M. G. Gilbert, and A. S. Pototzky, Static and dynamic aeroelastic characterization of an aerodynamically heated generic hypersonic aircraft configuration, NASA Research in Structure, (1990).
Google Scholar
[10]
D. Verstraete, G.A. Vio, Temperature effect on flutter of a Mach 5 transport aircraft wing, International Mechanical Engineering Conference, IMECE (2012).
Google Scholar
[11]
J. Steelant and M. van Duijn, Structural analysis of the LAPCAT-MR2 waverider based vehicle, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, April 11-14, 2011, San Francisco, USA, AIAA-2011-2336.
DOI: 10.2514/6.2011-2336
Google Scholar
[12]
K. Friedmann and P. Powell, Aeroelasticity, aerothermoelasticity and aeroelastic scaling of hypersonic vehicles, AFOSR Report, (2005).
Google Scholar
[13]
J. J. McNamara, P. P. Friedmann, K. G. Powell, B. J. Thuruthimattam, and R. E. Bartels, Aeroelastic and aerothermoelastic behavior in hypersonic flow, AIAA Journal, 46(10), 2591-2610, (2008).
DOI: 10.2514/1.36711
Google Scholar
[14]
R. M. Beam, On the phenomenon of thermoelastic instability thermal flutter of booms with open cross section, NASA TN D-5222, (1969).
Google Scholar
[15]
K. G. Bhatia, An automated method for determining the utter velocity and the matched point, Journal of Aircraft, 11(1), 21-27, (1974).
Google Scholar
[16]
J. J. McNamara and P. P. Friedmann, Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future, AIAA Journal, 49(6), 1089-1122, (2011).
DOI: 10.2514/1.j050882
Google Scholar