[1]
Rajagopalan, J., J.H. Han, and M.T.A. Saif, Plastic Deformation Recovery in Freestanding Nanocrystalline Aluminum and Gold Thin Films. Science. 315(5820) (2007). 1831-1834.
DOI: 10.1126/science.1137580
Google Scholar
[2]
Dingley, D.J. and R.C. Pond, On the interaction of crystal dislocations with grain boundaries. Acta Metallurgica. 27(4) (1979). 667-682.
DOI: 10.1016/0001-6160(79)90018-x
Google Scholar
[3]
Amodeo, R.J. and N.M. Ghoniem, Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Physical Review B. 41(10) (1990). 6958-6967.
DOI: 10.1103/physrevb.41.6958
Google Scholar
[4]
Devincre, B., et al., Mesoscopic simulations of plastic deformation. Materials Science and Engineering: A. 309–310(0) (2001). 211-219.
DOI: 10.1016/s0921-5093(00)01725-1
Google Scholar
[5]
Kubin, L.P., B. Devincre, and C. de Sansal, Grain size strengthening in microcrystalline copper: a three-dimensional dislocation dynamics simulation. Key Engineering Materials. 423 (2010). 25-32.
DOI: 10.4028/www.scientific.net/kem.423.25
Google Scholar
[6]
Kumar, K.S., H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia. 51(19) (2003). 5743-5774.
DOI: 10.1016/j.actamat.2003.08.032
Google Scholar
[7]
Grimmer, H., W. Bollmann, and D.H. Warrington, Coincidence-site lattices and complete pattern-shift in cubic crystals. Acta Crystallographica Section A. 30(2) (1974). 197-207.
DOI: 10.1107/s056773947400043x
Google Scholar
[8]
Sangid, M.D., et al., Energy of slip transmission and nucleation at grain boundaries. Acta Materialia. 59(1) (2011). 283-296.
DOI: 10.1016/j.actamat.2010.09.032
Google Scholar
[9]
Lee, T.C., I.M. Robertson, and H.K. Birnbaum, An In Situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. MTA. 21(9) (1990). 2437-2447.
DOI: 10.1007/bf02646988
Google Scholar
[10]
Rittner, J.D. and D.N. Seidman, <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Physical Review B - Condensed Matter and Materials Physics. 54(10) (1996). 6999-7015.
DOI: 10.1103/physrevb.54.6999
Google Scholar
[11]
Tschopp, M.A. and D.L. McDowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philosophical Magazine. 87(25) (2007). 3871-3892.
DOI: 10.1080/14786430701455321
Google Scholar
[12]
Plimpton, S.J., Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics. 117(Refer to: http: /lammps. sandia. gov) (1995). 1-19.
DOI: 10.1006/jcph.1995.1039
Google Scholar
[13]
Mishin, Y., et al., Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Physical Review B. 59(5) (1999). 3393-3407.
DOI: 10.1103/physrevb.59.3393
Google Scholar
[14]
Hoover, W.G., Constant-pressure equations of motion. Physical Review A. 34(3) (1986). 2499-2500.
Google Scholar
[15]
Li, J., AtomEye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering. 11(2) (2003). 173.
DOI: 10.1088/0965-0393/11/2/305
Google Scholar
[16]
Kelchner, C.L., S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys Rev B: Condens Matter and Mater Phys. 58(17) (1998). 11085-088.
DOI: 10.1103/physrevb.58.11085
Google Scholar