[1]
L.J. Gibson, Mechanical behavior of metallic foams, Annual Review of Materials Science, (2000) Vol. 30, pp.191-227.
Google Scholar
[2]
M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W., Hutchinson, and H.N.G. Wadley, Metal Foams - A Design Guide, Butterworths Heinemann, London, UK (2000).
DOI: 10.1016/b978-075067219-1/50001-5
Google Scholar
[3]
H. Shen, L.C. Brinson, A numerical investigation of the effect of boundary conditions and representative volume element size for porous titanium, Journal of Mechanics of Materials and Structures, (2006), Vol. 1, No. 7, pp.1179-1204.
DOI: 10.2140/jomms.2006.1.1179
Google Scholar
[4]
H. Shen, S.M. Oppenheimer, D.C. Dunand, L.C. Brinson, Numerical modeling of pore size and distribution in foamed titanium, Mechanics of Materials, (2006) Vol. 38, p.933–944.
DOI: 10.1016/j.mechmat.2005.06.027
Google Scholar
[5]
H. Shen, L.C. Brinson, Finite element modeling of porous titanium, International Journal of Solids and Structures, (2007) Vol. 44, p.320–335.
DOI: 10.1016/j.ijsolstr.2006.04.020
Google Scholar
[6]
Y. An, C.H. Yang, P.D. Hodgson and C. Wen, Effect of pore size on mechanical properties of titanium foams, Materials Science Forum, (2010), Vol. 654-656, pp.827-830.
DOI: 10.4028/www.scientific.net/msf.654-656.827
Google Scholar
[7]
C.H. Yang, Y. An, M. Tort, and P.D. Hodgson, Fabrication, modelling and evaluation of microstructured materials in a digital framework, Computational Materials Science, (2013), In Press.
DOI: 10.1016/j.commatsci.2013.05.033
Google Scholar
[8]
T. Jurczyk M. Pietrzyk L. Rauch, L. Madej. Complex modeling platform based on digital material representation, Complex Systems Concurrent Engineering, (2007), pp.403-410.
DOI: 10.1007/978-1-84628-976-7_45
Google Scholar
[9]
L. Madej, L. Rauch, C.H. Yang, Strain distribution analysis based on the digital material representation, Archives of Metallurgy and Materials, (2009), Vol. 54, No. 3, pp.499-507.
Google Scholar
[10]
L. Q Chen C.E. Krill, Computer simulation of 3-d grain growth using a phase field model, ActaMaterialia, (2002), Vol. 50, pp.3057-3073.
Google Scholar
[11]
M. Groeber. Development of an automated characterization representation framework for the modelling of polycrystalline materials in 3D. PhD thesis, The Ohio State University, (2007).
Google Scholar
[12]
D. Saylor-J. Fridy A.D. Rollett A. Brahme, M.H. Alvi. 3d reconstruction of microstructure in a commercial purity aluminum. Scripta Materialia, (2006), Vol. 55, pp.75-80.
DOI: 10.1016/j.scriptamat.2006.02.017
Google Scholar
[13]
R. Pyrz B. Bochenek. Reconstruction of random microstructures - a stochastic optimization problem. Computational Materials Science, (2004), Vol. 31, pp.93-112.
DOI: 10.1016/j.commatsci.2004.01.038
Google Scholar
[14]
H. Riesch-Oppermann L. Cizelj M. Kovac S. Weyer, Andreas Frohlich. Automatic finite element meshing of planar voronoi tessellations. Engineering Fracture Mechanics, (2002) Vol. 69, pp.945-958.
DOI: 10.1016/s0013-7944(01)00124-2
Google Scholar
[15]
A. Asgari, C.H. Yang, P.D. Hodgson and B.F. Rolfe, Modeling of Advanced High Strength Steels with the Realistic Microstructure-Strength Relationships, Computational Materials Science, (2009) Vol. 45, No. 4, pp.860-866.
DOI: 10.1016/j.commatsci.2008.12.003
Google Scholar
[16]
N. Michailidis, F. Stergioudi, H. Omar, D. Tsipas, FEM modeling of the response of porous Al in compression, Computational Materials Science, (2010) Vol. 4, p.8282–286.
DOI: 10.1016/j.commatsci.2010.01.008
Google Scholar
[17]
N. Michailidis, F. Stergioudi, H. Omar, D. Papadopoulos, D.N. Tsipas, Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading, Colloids and Surfaces A: Physicochem. Eng. Aspects, (2011).
DOI: 10.1016/j.colsurfa.2010.12.017
Google Scholar
[18]
C. Geuzaine and J.F. Remacle. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79 (2009) 1309.
DOI: 10.1002/nme.2579
Google Scholar