[1]
D. Sulsky, Z. Chen, H.L. Schreyer, A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering 118 (1994) 176-196.
DOI: 10.1016/0045-7825(94)90112-0
Google Scholar
[2]
D. Sulsky, S.J. Zhou, H.L. Schreyer. Application of a particle-in-cell method to solid mechanics. Computer Physics Communications 87 (1995) 236-252.
DOI: 10.1016/0010-4655(94)00170-7
Google Scholar
[3]
J.U. Brackbill, H.M. Ruppel, FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics 65 (1986) 314-346.
DOI: 10.1016/0021-9991(86)90211-1
Google Scholar
[4]
G. Lube, H.E. Huppert, R.S.J. Sparks, A. Freundt, Granular column collapses down rough, inclined channels. J. Fluid Mech 675 (2011) 347-368.
DOI: 10.1017/jfm.2011.21
Google Scholar
[5]
S.G. Bardenhagen, E.M. Kober The Generalized Interpolation Material Point Method. Computer Modeling in Engineering & Sciences 5 (2004) 477-495.
Google Scholar
[6]
J. Ma , H. Lu, R Komanduri. Structured mesh refinement in generalized interpolation material point method (GIMP) for simulation of dynamic problems. Computer Modeling in Engineering and Sciences 12 (2006): 213–227.
Google Scholar
[7]
A. Sadeghirad, R.M. Brannon, J. Burghard. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations, Int. J. Num. Meth. Engn 86 (2011) 1435-1456.
DOI: 10.1002/nme.3110
Google Scholar
[8]
J. Clausen, L. Damkilde, L. Andersen. Efficient return algorithms for associated plasticity with multiple yield planes. Int. J. Numer. Meth. Engng 66 (2006) 1036–1059.
DOI: 10.1002/nme.1595
Google Scholar
[9]
J. Clausen, L. Damkilde, L. Andersen. An efficient return algorithm for non-associated plasticity. Computers and Structures 85 (2007) 1795–1807.
DOI: 10.1016/j.compstruc.2007.04.002
Google Scholar
[10]
W.T. Sołowski, S.W. Sloan. Modelling of sand column collapse with Material Point Method. Proceedings of the Third International Symposium on Computational Geomechanics (ComGeo III) in Krakow, 21-23 August, (2013).
Google Scholar