[1]
P.C. Ma, J.K. Kim, Carbon Nanotubes for Polymer Reinforcement, CRC Press, Boca Raton, (2011).
Google Scholar
[2]
J.N. Coleman, U. Khan, Y.K. Gun'ko, Mechanical reinforcement of polymers using carbon nanotubes, Advanced Materials, 18 (2006) 689-706.
DOI: 10.1002/adma.200501851
Google Scholar
[3]
P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite science and technology, Wiley-VCN, New York, (2003).
Google Scholar
[4]
R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, D.H. Wu, Processing and properties of carbon nanotubes–nano-SiC ceramic, Journal of Materials Science, 33 (1998) 5243-5246.
Google Scholar
[5]
H.S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, 91 (2009) 9-19.
DOI: 10.1016/j.compstruct.2009.04.026
Google Scholar
[6]
H.S. Shen, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells, Composites Part B-Engineering, 43 (2012) 1030-1038.
DOI: 10.1016/j.compositesb.2011.10.004
Google Scholar
[7]
H.S. Shen, Y. Xiang, Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments, Computer Methods in Applied Mechanics and Engineering, 213 (2012) 196-205.
DOI: 10.1016/j.cma.2011.11.025
Google Scholar
[8]
H.S. Shen, C.L. Zhang, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Materials & Design, 31 (2010) 3403-3411.
DOI: 10.1016/j.matdes.2010.01.048
Google Scholar
[9]
H.S. Shen, Z.H. Zhu, Buckling and Postbuckling Behavior of Functionally Graded Nanotube-Reinforced Composite Plates in Thermal Environments, Cmc-Computers Materials & Continua, 18 (2010) 155-182.
DOI: 10.1016/j.matdes.2010.01.048
Google Scholar
[10]
H.S. Shen, Z.H. Zhu, Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations, European Journal of Mechanics a-Solids, 35 (2012) 10-21.
DOI: 10.1016/j.euromechsol.2012.01.005
Google Scholar
[11]
Q.H. Zeng, A.B. Yu, G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites, Progress in Polymer Science, 33 (2008) 191-269.
DOI: 10.1016/j.progpolymsci.2007.09.002
Google Scholar
[12]
M. Griebel, J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 1773-1788.
DOI: 10.1016/j.cma.2003.12.025
Google Scholar
[13]
Y. Han, J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials Science, 39 (2007) 315-323.
DOI: 10.1016/j.commatsci.2006.06.011
Google Scholar
[14]
M. Bohlen, K. Bolton, Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly(vinylidene fluoride), Computational Materials Science, 68 (2013) 73-80.
DOI: 10.1016/j.commatsci.2012.10.010
Google Scholar
[15]
J.N. Reddy, Mechanics of Laminated Composite Plates and Shells, 2nd ed., CRC press, New York, (2004).
Google Scholar
[16]
K.M. Liew, C.M. Wang, Y. Xiang, S. Kitipornchai, Vibration of Mindlin plates: programming the p-version Ritz Method, Elsevier, (1998).
DOI: 10.1016/b978-008043341-7/50003-0
Google Scholar