Vibration Analysis of Carbon Nanotube Reinforced Composite Plates

Article Preview

Abstract:

This paper presents an investigation on the free vibration of rectangular nanocomposite plates reinforced by aligned single-walled carbon nanotubes (SWCNTs). The CNT reinforcement may be uniformly distributed (UD) or functionally graded (FG) over the thickness direction of a plate. The material properties of the CNT composite are determined through a micromechanical model. The eigenvalue equation governing the plate vibration problem is derived by the p-Ritz method through minimizing the virtual strain and kinetic energies of a CNT composite plate. The influences of CNT distribution and reinforcing angle, plate thickness ratio, aspect ratio and support conditions on the vibration behaviour of the plates are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

681-686

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.C. Ma, J.K. Kim, Carbon Nanotubes for Polymer Reinforcement, CRC Press, Boca Raton, (2011).

Google Scholar

[2] J.N. Coleman, U. Khan, Y.K. Gun'ko, Mechanical reinforcement of polymers using carbon nanotubes, Advanced Materials, 18 (2006) 689-706.

DOI: 10.1002/adma.200501851

Google Scholar

[3] P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite science and technology, Wiley-VCN, New York, (2003).

Google Scholar

[4] R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, D.H. Wu, Processing and properties of carbon nanotubes–nano-SiC ceramic, Journal of Materials Science, 33 (1998) 5243-5246.

Google Scholar

[5] H.S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, 91 (2009) 9-19.

DOI: 10.1016/j.compstruct.2009.04.026

Google Scholar

[6] H.S. Shen, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells, Composites Part B-Engineering, 43 (2012) 1030-1038.

DOI: 10.1016/j.compositesb.2011.10.004

Google Scholar

[7] H.S. Shen, Y. Xiang, Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments, Computer Methods in Applied Mechanics and Engineering, 213 (2012) 196-205.

DOI: 10.1016/j.cma.2011.11.025

Google Scholar

[8] H.S. Shen, C.L. Zhang, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Materials & Design, 31 (2010) 3403-3411.

DOI: 10.1016/j.matdes.2010.01.048

Google Scholar

[9] H.S. Shen, Z.H. Zhu, Buckling and Postbuckling Behavior of Functionally Graded Nanotube-Reinforced Composite Plates in Thermal Environments, Cmc-Computers Materials & Continua, 18 (2010) 155-182.

DOI: 10.1016/j.matdes.2010.01.048

Google Scholar

[10] H.S. Shen, Z.H. Zhu, Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations, European Journal of Mechanics a-Solids, 35 (2012) 10-21.

DOI: 10.1016/j.euromechsol.2012.01.005

Google Scholar

[11] Q.H. Zeng, A.B. Yu, G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites, Progress in Polymer Science, 33 (2008) 191-269.

DOI: 10.1016/j.progpolymsci.2007.09.002

Google Scholar

[12] M. Griebel, J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 1773-1788.

DOI: 10.1016/j.cma.2003.12.025

Google Scholar

[13] Y. Han, J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials Science, 39 (2007) 315-323.

DOI: 10.1016/j.commatsci.2006.06.011

Google Scholar

[14] M. Bohlen, K. Bolton, Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly(vinylidene fluoride), Computational Materials Science, 68 (2013) 73-80.

DOI: 10.1016/j.commatsci.2012.10.010

Google Scholar

[15] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells, 2nd ed., CRC press, New York, (2004).

Google Scholar

[16] K.M. Liew, C.M. Wang, Y. Xiang, S. Kitipornchai, Vibration of Mindlin plates: programming the p-version Ritz Method, Elsevier, (1998).

DOI: 10.1016/b978-008043341-7/50003-0

Google Scholar