[1]
S.S. Vakil, K.A. Thole, Flow and Thermal Field Measurements in a Combustor Simulator Relevant to a Gas Turbine Aeroengine, J. Eng. Gas Turbines Power. 127 (2005) 257-267.
DOI: 10.1115/1.1806455
Google Scholar
[2]
E. Kianpour, N.A.C. Sidik, M. Agha Seyyed Mirza Bozorg, Thermodynamic analysis of flow field at the end of combustor simulator, Int J Heat Mass Tran. 61 (2012) 389-396.
DOI: 10.1016/j.ijheatmasstransfer.2013.02.031
Google Scholar
[3]
E. Kianpour, N.A.C. Sidik, M.A. Wahid, Cylindrical and Row Trenched Cooling Holes with Alignment Angle of 90o at Different Blowing Ratios, CFD Letter. 5(4) (2013) 165-173.
DOI: 10.1080/10407782.2014.901042
Google Scholar
[4]
G. Xie, B. Sunden, Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey, Heat Transfer Engineering. 31 (2010) 527–554.
DOI: 10.1080/01457630903425320
Google Scholar
[5]
J. Polezhaev, The transpiration cooling for blades of high temperatures gas turbine, Energ Convers Manage. 38 (1997) 1123-1133.
DOI: 10.1016/s0196-8904(96)00142-2
Google Scholar
[6]
L. Yuzhen, S. Bo, L. Bin, L. Gaoen, Measured Film Cooling Effectiveness of Three Multihole Patterns, J. Heat Transf. 128 (2005) 192-197.
DOI: 10.1115/1.2137762
Google Scholar
[7]
W. Ai, T.H. Fletcher, Computational Analysis of conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane, J. Turbomach. 134 (2012) 041020.
DOI: 10.1115/1.4003716
Google Scholar
[8]
C.L. Liu, H.R. Zhu, Z.W. Zhang, D.C. Xu, Experimental investigation on the leading edge film cooling of cylindrical and laid-back holes with different hole pitches, Int J. Heat Mass Tran. 55 (2012) 6832-6845.
DOI: 10.1016/j.ijheatmasstransfer.2012.06.090
Google Scholar
[9]
K. Abdullah, K.I. Funazaki, Effects of Blowing Ratio on Multiple Shallow Angle Film Cooling Holes, Appl Mech Mater. 225 (2012) 49-54.
DOI: 10.4028/www.scientific.net/amm.225.49
Google Scholar
[10]
S. Baldauf, A. Schulz, S. Wittig, High-Resolution Measurements of Local Heat Transfer Coefficients from Discrete Hole Film Cooling, J. Turbomach. 123 (2001) 749-757.
DOI: 10.1115/1.1387245
Google Scholar
[11]
H. Nasir, S.V. Ekkad, S. Acharya, Effect of Compound Angle Injection on Flat Surface Film Cooling with Large Streamwise Injection Angle, Exp Therm Fluid Sci. 25 (2001) 23-29.
DOI: 10.1016/s0894-1777(01)00052-8
Google Scholar
[12]
S.R. Shine, S. Sunil Kumar, B.N. Suresh, Internal wall-jet film cooling with compound angle cylindrical holes, Energ Convers Manage. 68 (2013) 54-62.
DOI: 10.1016/j.enconman.2012.12.021
Google Scholar
[13]
S. Acharya, D.H. Leedom, Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects, J Heat Transf. 135 (2013) 011010. 1- 011010. 12.
DOI: 10.1115/1.4007667
Google Scholar
[14]
T. Kampe, S. Volker, F. Zehe, A Model for Cylindrical Holes Film Cooling—Part I: A Correlation for Jet-Flow With Application to Film Cooling, J. Turbomach. 134 (2012) 061010.
DOI: 10.1115/1.4006306
Google Scholar
[15]
A. Lawson, K.A. Thole, Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches, J. Turbomach. 134 (2012) 051040. 1-051040-10.
DOI: 10.1115/1.4004756
Google Scholar
[16]
S.A. Lawson, K.A. Thole, Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches, J. Turbomach. 134 (2012) 051040.
DOI: 10.1115/1.4004756
Google Scholar
[17]
L. Yiping, A. Dhungel, S.V. Ekkad, R.S. Bunker, Improved Trench Film Cooling With Shaped Trench Outlets, J. Turbomach. 131 (2009) 011003.
Google Scholar
[18]
J. Maikell, D. Bogard, J. Piggush, A. Kohli, Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects, J. Turbomach. 133 (2011) 011014.
DOI: 10.1115/1.4000537
Google Scholar
[19]
G. Barigozzi, G. Benzoni, G. Franchini, A. Perdichizzi, Fan-shaped hole effects on the aero-thermal performance of a film-cooled end wall. J. Turbomach. 128 (2006) 43-52.
DOI: 10.1115/1.2098788
Google Scholar
[20]
G. Barigozzi, G. Franchini, A. Perdichizzi, End-Wall Film Cooling Through Fan-Shaped Holes With Different Area Ratios. . J. Turbomach. 129 (2007) 212- 220.
DOI: 10.1115/1.2464140
Google Scholar
[21]
C. Saumweber, A. Schulz, Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes, J. Turbomach. 134 (2012) 061008.
DOI: 10.1115/1.4006290
Google Scholar
[22]
X.Z. Zhang, I. Hassan, Numerical investigation of heat transfer on film cooling with shaped holes, Int J Heat Fluid Fl. 16 (2006) 848-869.
DOI: 10.1108/09615530610702032
Google Scholar
[23]
Z. Gao, D. Narzary, J.C. Han, Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling, J. Turbomach. 131 (2009) 041004.
DOI: 10.1115/1.3068327
Google Scholar
[24]
W. Colban, K.A. Thole, M. Haendler, A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels, J. Turbomach. 130 (2008) 031007.
DOI: 10.1115/1.2720493
Google Scholar
[25]
G. Barigozzi, G. Franchini, A. Perdichizzi, S. Ravelli, Film Cooling of a Contoured End wall Nozzle vane through fan –shaped holes, Int. J. Heat Fluid Fl. 31 (2010) 576-585.
DOI: 10.1016/j.ijheatfluidflow.2010.04.001
Google Scholar
[26]
W. Colban, K.A. Thole, M. Haendler, Experimental and Computational Comparisons of Fan-Shaped Film-Cooling on a Turbine Vane Surface, J. Turbomach. 129 (2007) 23-31.
DOI: 10.1115/1.2370747
Google Scholar
[27]
V. Aga, R.S. Abhari, Influence of Flow Structure on Compound Angled Film Cooling Effectiveness and Heat Transfer, J. Turbomach. 133 (2011) 031029.
DOI: 10.1115/1.4002420
Google Scholar
[28]
B.A. Jubran, A.K. Al-Hamadi, G. Theodoridis, Film cooling and heat transfer with air injection through two rows of compound angle holes, Heat Mass Transfer. 33 (1997) 93-100.
DOI: 10.1007/s002310050165
Google Scholar
[29]
I.C. Lee, Y.C. Chang, P.P. Ding, P.H. Chen, Film Cooling Over a Concave Surface Through Two Staggered Rows of Compound Angle Holes, J Chin Inst Eng. 28 (2005) 827-836.
DOI: 10.1080/02533839.2005.9671053
Google Scholar
[30]
L.M. Wright, S.T. McClain, M.D. Clemenson, Effect of Freestream Turbulence Intensity on Film Cooling Jet Structure and Surface Effectiveness using PIV and PSP, J. Turbomach. 133 (2011) 041023.
DOI: 10.1115/1.4003051
Google Scholar
[31]
S.R. Shine, S.S. Kumar, B.N. Suresh, Influence of coolant injector configuration on film cooling effectiveness for gaseous and liquid film coolants, Heat Mass Transfer. 48 (2011) 849-861.
DOI: 10.1007/s00231-011-0936-z
Google Scholar
[32]
A.K. Al-Hamadi, B.A. Jurban, G. Theodoridis, Turbulence Intensity Effects on Film Cooling and Heat Transfer from Compound Angle Holes with Particular Application to Gas Turbine Blades, Energ Convers Manage. 39 (1998) 1449-1457.
DOI: 10.1016/s0196-8904(98)00033-8
Google Scholar
[33]
S. Baheri Islami, S.P. Alavi Tabrizi, B.A. Jubran, Computational investigation of film cooling from trenched holes near the leading edge of a turbine blade. Numer Heat Transfer. 53 (2008) 308–322.
DOI: 10.1080/10407780701564200
Google Scholar
[34]
S. Baheri Islami, S.P. Alavi Tabrizi, B.A. Jubran, E. Esmaeilzadeh, Influence of trenched shaped holes on turbine blade leading edge film cooling. Heat Transfer Eng. 31 (2010) 889-906.
DOI: 10.1080/01457630903550317
Google Scholar
[35]
S. Mhetras, J.C. Han, R. Rudolph, Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade, J. Turbomach. 134 (2012) 011004.
DOI: 10.1115/1.4003228
Google Scholar
[36]
C.M. Bell, H. Hamakawa, P.M. Ligrani, Film Cooling From Shaped Holes, J. Heat Transf. 122 (2000) 224-232.
DOI: 10.1115/1.521484
Google Scholar
[37]
C. Heneka, A. Schulz, H.J. Bauer, A. Heselhaus, M.E. Crawford, Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner, J. Turbomach. 134 (2012) 041015.
DOI: 10.1115/gt2012-68972
Google Scholar
[38]
S. Baheri Islami, S.P. Alavi Tabrizi, B.A. Jubran, Film Cooling Effectiveness from Trenched Shaped and Compound Holes. Heat Mass Transfer. 44 (2008) 989–998.
DOI: 10.1007/s00231-007-0341-9
Google Scholar