Film-Cooling Techniques at the End of Combustor and Inlet of Turbine in a Gas Turbine Engine: A Review

Article Preview

Abstract:

This study was carried out to extend database knowledge about the film cooling holes function at the end of combustor and inlet of turbine. Using the well-known Brayton cycle, rising the turbine inlet temperature, is the key to get higher engine efficiency in gas turbine engines. But the high temperature of the combustor exit flow causes non-uniformities. These non-uniformities lead to a reduction in the expected life of critical components. Therefore a cooling technique should be designed to protect these parts. There are two separate ways for Gas turbine cooling: internal cooling and external cooling. Film cooling is one of the most effective external cooling methods. In this system, a low temperature thin boundary layer such as buffer zone is formed and attached on the protected surface. In this study, a literature survey was done on the limited surveys, particularly since the first of 21th century.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-240

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.S. Vakil, K.A. Thole, Flow and Thermal Field Measurements in a Combustor Simulator Relevant to a Gas Turbine Aeroengine, J. Eng. Gas Turbines Power. 127 (2005) 257-267.

DOI: 10.1115/1.1806455

Google Scholar

[2] E. Kianpour, N.A.C. Sidik, M. Agha Seyyed Mirza Bozorg, Thermodynamic analysis of flow field at the end of combustor simulator, Int J Heat Mass Tran. 61 (2012) 389-396.

DOI: 10.1016/j.ijheatmasstransfer.2013.02.031

Google Scholar

[3] E. Kianpour, N.A.C. Sidik, M.A. Wahid, Cylindrical and Row Trenched Cooling Holes with Alignment Angle of 90o at Different Blowing Ratios, CFD Letter. 5(4) (2013) 165-173.

DOI: 10.1080/10407782.2014.901042

Google Scholar

[4] G. Xie, B. Sunden, Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey, Heat Transfer Engineering. 31 (2010) 527–554.

DOI: 10.1080/01457630903425320

Google Scholar

[5] J. Polezhaev, The transpiration cooling for blades of high temperatures gas turbine, Energ Convers Manage. 38 (1997) 1123-1133.

DOI: 10.1016/s0196-8904(96)00142-2

Google Scholar

[6] L. Yuzhen, S. Bo, L. Bin, L. Gaoen, Measured Film Cooling Effectiveness of Three Multihole Patterns, J. Heat Transf. 128 (2005) 192-197.

DOI: 10.1115/1.2137762

Google Scholar

[7] W. Ai, T.H. Fletcher, Computational Analysis of conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane, J. Turbomach. 134 (2012) 041020.

DOI: 10.1115/1.4003716

Google Scholar

[8] C.L. Liu, H.R. Zhu, Z.W. Zhang, D.C. Xu, Experimental investigation on the leading edge film cooling of cylindrical and laid-back holes with different hole pitches, Int J. Heat Mass Tran. 55 (2012) 6832-6845.

DOI: 10.1016/j.ijheatmasstransfer.2012.06.090

Google Scholar

[9] K. Abdullah, K.I. Funazaki, Effects of Blowing Ratio on Multiple Shallow Angle Film Cooling Holes, Appl Mech Mater. 225 (2012) 49-54.

DOI: 10.4028/www.scientific.net/amm.225.49

Google Scholar

[10] S. Baldauf, A. Schulz, S. Wittig, High-Resolution Measurements of Local Heat Transfer Coefficients from Discrete Hole Film Cooling, J. Turbomach. 123 (2001) 749-757.

DOI: 10.1115/1.1387245

Google Scholar

[11] H. Nasir, S.V. Ekkad, S. Acharya, Effect of Compound Angle Injection on Flat Surface Film Cooling with Large Streamwise Injection Angle, Exp Therm Fluid Sci. 25 (2001) 23-29.

DOI: 10.1016/s0894-1777(01)00052-8

Google Scholar

[12] S.R. Shine, S. Sunil Kumar, B.N. Suresh, Internal wall-jet film cooling with compound angle cylindrical holes, Energ Convers Manage. 68 (2013) 54-62.

DOI: 10.1016/j.enconman.2012.12.021

Google Scholar

[13] S. Acharya, D.H. Leedom, Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects, J Heat Transf. 135 (2013) 011010. 1- 011010. 12.

DOI: 10.1115/1.4007667

Google Scholar

[14] T. Kampe, S. Volker, F. Zehe, A Model for Cylindrical Holes Film Cooling—Part I: A Correlation for Jet-Flow With Application to Film Cooling, J. Turbomach. 134 (2012) 061010.

DOI: 10.1115/1.4006306

Google Scholar

[15] A. Lawson, K.A. Thole, Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches, J. Turbomach. 134 (2012) 051040. 1-051040-10.

DOI: 10.1115/1.4004756

Google Scholar

[16] S.A. Lawson, K.A. Thole, Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches, J. Turbomach. 134 (2012) 051040.

DOI: 10.1115/1.4004756

Google Scholar

[17] L. Yiping, A. Dhungel, S.V. Ekkad, R.S. Bunker, Improved Trench Film Cooling With Shaped Trench Outlets, J. Turbomach. 131 (2009) 011003.

Google Scholar

[18] J. Maikell, D. Bogard, J. Piggush, A. Kohli, Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects, J. Turbomach. 133 (2011) 011014.

DOI: 10.1115/1.4000537

Google Scholar

[19] G. Barigozzi, G. Benzoni, G. Franchini, A. Perdichizzi, Fan-shaped hole effects on the aero-thermal performance of a film-cooled end wall. J. Turbomach. 128 (2006) 43-52.

DOI: 10.1115/1.2098788

Google Scholar

[20] G. Barigozzi, G. Franchini, A. Perdichizzi, End-Wall Film Cooling Through Fan-Shaped Holes With Different Area Ratios. . J. Turbomach. 129 (2007) 212- 220.

DOI: 10.1115/1.2464140

Google Scholar

[21] C. Saumweber, A. Schulz, Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes, J. Turbomach. 134 (2012) 061008.

DOI: 10.1115/1.4006290

Google Scholar

[22] X.Z. Zhang, I. Hassan, Numerical investigation of heat transfer on film cooling with shaped holes, Int J Heat Fluid Fl. 16 (2006) 848-869.

DOI: 10.1108/09615530610702032

Google Scholar

[23] Z. Gao, D. Narzary, J.C. Han, Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling, J. Turbomach. 131 (2009) 041004.

DOI: 10.1115/1.3068327

Google Scholar

[24] W. Colban, K.A. Thole, M. Haendler, A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels, J. Turbomach. 130 (2008) 031007.

DOI: 10.1115/1.2720493

Google Scholar

[25] G. Barigozzi, G. Franchini, A. Perdichizzi, S. Ravelli, Film Cooling of a Contoured End wall Nozzle vane through fan –shaped holes, Int. J. Heat Fluid Fl. 31 (2010) 576-585.

DOI: 10.1016/j.ijheatfluidflow.2010.04.001

Google Scholar

[26] W. Colban, K.A. Thole, M. Haendler, Experimental and Computational Comparisons of Fan-Shaped Film-Cooling on a Turbine Vane Surface, J. Turbomach. 129 (2007) 23-31.

DOI: 10.1115/1.2370747

Google Scholar

[27] V. Aga, R.S. Abhari, Influence of Flow Structure on Compound Angled Film Cooling Effectiveness and Heat Transfer, J. Turbomach. 133 (2011) 031029.

DOI: 10.1115/1.4002420

Google Scholar

[28] B.A. Jubran, A.K. Al-Hamadi, G. Theodoridis, Film cooling and heat transfer with air injection through two rows of compound angle holes, Heat Mass Transfer. 33 (1997) 93-100.

DOI: 10.1007/s002310050165

Google Scholar

[29] I.C. Lee, Y.C. Chang, P.P. Ding, P.H. Chen, Film Cooling Over a Concave Surface Through Two Staggered Rows of Compound Angle Holes, J Chin Inst Eng. 28 (2005) 827-836.

DOI: 10.1080/02533839.2005.9671053

Google Scholar

[30] L.M. Wright, S.T. McClain, M.D. Clemenson, Effect of Freestream Turbulence Intensity on Film Cooling Jet Structure and Surface Effectiveness using PIV and PSP, J. Turbomach. 133 (2011) 041023.

DOI: 10.1115/1.4003051

Google Scholar

[31] S.R. Shine, S.S. Kumar, B.N. Suresh, Influence of coolant injector configuration on film cooling effectiveness for gaseous and liquid film coolants, Heat Mass Transfer. 48 (2011) 849-861.

DOI: 10.1007/s00231-011-0936-z

Google Scholar

[32] A.K. Al-Hamadi, B.A. Jurban, G. Theodoridis, Turbulence Intensity Effects on Film Cooling and Heat Transfer from Compound Angle Holes with Particular Application to Gas Turbine Blades, Energ Convers Manage. 39 (1998) 1449-1457.

DOI: 10.1016/s0196-8904(98)00033-8

Google Scholar

[33] S. Baheri Islami, S.P. Alavi Tabrizi, B.A. Jubran, Computational investigation of film cooling from trenched holes near the leading edge of a turbine blade. Numer Heat Transfer. 53 (2008) 308–322.

DOI: 10.1080/10407780701564200

Google Scholar

[34] S. Baheri Islami, S.P. Alavi Tabrizi, B.A. Jubran, E. Esmaeilzadeh, Influence of trenched shaped holes on turbine blade leading edge film cooling. Heat Transfer Eng. 31 (2010) 889-906.

DOI: 10.1080/01457630903550317

Google Scholar

[35] S. Mhetras, J.C. Han, R. Rudolph, Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade, J. Turbomach. 134 (2012) 011004.

DOI: 10.1115/1.4003228

Google Scholar

[36] C.M. Bell, H. Hamakawa, P.M. Ligrani, Film Cooling From Shaped Holes, J. Heat Transf. 122 (2000) 224-232.

DOI: 10.1115/1.521484

Google Scholar

[37] C. Heneka, A. Schulz, H.J. Bauer, A. Heselhaus, M.E. Crawford, Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner, J. Turbomach. 134 (2012) 041015.

DOI: 10.1115/gt2012-68972

Google Scholar

[38] S. Baheri Islami, S.P. Alavi Tabrizi, B.A. Jubran, Film Cooling Effectiveness from Trenched Shaped and Compound Holes. Heat Mass Transfer. 44 (2008) 989–998.

DOI: 10.1007/s00231-007-0341-9

Google Scholar