The Study of Morphological Structure and Raman Spectra of 3C-SiC Membranes

Article Preview

Abstract:

In this paper, membranes of 3C-SiC with dimensions up to 10 mm x 15 mm2 have been fabricated in epitaxial 3C-SiC/ Si wafers by the means of photolithography, reactive ion etching of 3C-SiC and wet etching of Si. Scanning electron microscope (SEM) micrographs were used to observe the structure of the membrane and the wall formed by the Si wet etching. The quality of the 3C-SiC membranes were observed using Raman Spectroscopy. The remains of <111> Si substrate which was unetched during the Si wet etching were presented with the formation of microstructure defects which showed distinct peaks in comparison to the high quality 3C-SiC membranes at different position. Here, the effect of the membrane fabrication procedures to the 3C-SiC membrane properties especially the morphological structure and its Raman characteristics is discussed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-70

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman J.M. Moran, and J. Melzak: Biomaterials. Vol. 23, p.2737, (2002).

DOI: 10.1016/s0142-9612(02)00007-8

Google Scholar

[2] C.A. Zorman: Silicon carbide as a material for Biomedical Microsystems, EDA Publishing, Italy, (2009).

Google Scholar

[3] M. Mehregany, C. A Zorman, R. Rajan, C.H. Wu: Proc. IEEE. Vol 86, No. 8, p.1594, (1998).

Google Scholar

[4] R. Cheung, in: Silicon Carbide Microelectromechanical Systems for Harsh Environments, edited by R. Cheung, Imperial College Press, London, UK, p.1, (2006).

DOI: 10.1142/p426

Google Scholar

[5] N. Piluso, A. Severino, M. Camarda, A. Canino, A. La Magna, and F. La Via: Mater. Sci. Forum. Vol. 679, p.221, (2011).

DOI: 10.4028/www.scientific.net/msf.679-680.221

Google Scholar

[6] J. Zhu, S. Liu and J. Liang: Thin Solid Films, Vol. 368, p.307, (2000).

Google Scholar

[7] S. Nakashima, Y. Nakatake, Y. Ishida, T. Talkahashi and H. Okumura: Physica B, Vol. 308, p.684, (2001).

DOI: 10.1016/s0921-4526(01)00795-5

Google Scholar

[8] L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner, and H. B. Harrison: Thin Solid Films. Vol. 519, p.6443, (2011).

DOI: 10.1016/j.tsf.2011.04.224

Google Scholar

[9] N.F. Mohd Nasir, C.M. Shah, P.W. Leech, G.K. Reeves, E. Pirogova, T. Istivan, P. Tanner and A.S. Holland: International Conference on Biomedical Engineering (ICoBE). Vol, No., p.589, (2012).

DOI: 10.1109/icobe.2012.6178985

Google Scholar

[10] N.F. Mohd Nasir, A.S. Holland, G.K. Reeves, P.W. Leech, A. Collins and P. Tanner: MRS Proceedings, 1335, mrss11-1335-o09-01, (2011).

DOI: 10.1557/opl.2011.1202

Google Scholar

[11] C. A. Zorman and R. J. Parro: Phys. Status Solidi B, Vol. 245, p.1404, (2008).

Google Scholar

[12] K. E. Bean: IEEE Trans. Electron Devices, Vol. 25, p.1185, (1978).

Google Scholar

[13] S. Rohmfeld, M. Hundhausen and L. Ley: Phys. Rev. B, vol. 58, p.9858, (1998).

Google Scholar

[14] J. Zhu, S. Liu and J. Liang: Thin Solid Films, vol. 368, p.307, (2000).

Google Scholar

[15] Z. C. Feng, W. J. Choyke, and J. A. Powell: J. Appl. Phys., vol. 64, p.6827, (1988).

Google Scholar