[1]
A. Bernard: Virtual engineering - methods and tools, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture Vol. 219 (2005), pp.413-421.
DOI: 10.1243/095440505x32238
Google Scholar
[2]
E. Fischer: Standard multi-body system software in the vehicle development process, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics Vol. 221 (2007), pp.13-20.
DOI: 10.1243/1464419jmbd59
Google Scholar
[3]
E.J. Haug, K.K. Choi, J.G. Kuhl and J.D. Vargo: Virtual prototyping simulation for design of mechanical systems, Journal of Mechanical Design Vol. 117 (1995), pp.63-70.
DOI: 10.1115/1.2836472
Google Scholar
[4]
X.C. Wang, Y.F. Cao, L.K. Zhuang, X.H. Liu, M. Ding and Z.J. Liu: Collaborative modeling approach for virtual prototype of complex systems, Journal of University of Electronic Science and Technology of China Vol. 42 (2013), pp.648-655.
Google Scholar
[5]
X.C. Wang, Y.F. Cao, L.K. Zhuang, X.H. Liu, M. Ding and Z.J. Liu: Virtual prototype design environments of flight control system based on rhapsody, Journal of Vibration, Measurement and Diagnosis (Zhendong Ceshi Yu Zhenduan) Vol. 33 (2013).
Google Scholar
[6]
C. Alexandru: Software platform for analyzing and optimizing the mechanical systems, Proceedings of the 10th IFToMM International Symposium on Science of Mechanisms and Machines - SYROM, pp.665-677 (2009).
DOI: 10.1007/978-90-481-3522-6_56
Google Scholar
[7]
Ş. Staicu: Dynamics analysis of the Star parallel manipulator, Robotics and Autonomous Systems Vol. 57 (2009), pp.1057-1064.
DOI: 10.1016/j.robot.2009.07.005
Google Scholar
[8]
Ş. Staicu: Dynamics of the 6-6 Stewart parallel manipulator, Robotics and Computer-Integrated Manufacturing Vol. 27 (2011), pp.212-220.
DOI: 10.1016/j.rcim.2010.07.011
Google Scholar
[9]
C. Alexandru: Dynamic analysis of the guiding mechanisms used for the rear axle of the commercial vehicles, International Review of Mechanical Engineering Vol. 3 (2009), pp.1-6.
Google Scholar
[10]
J.H. Ezeta, A. Mandow and A.C. Cerezo: Active and semi-active suspension systems: A review, Revista Iberoamericana de Automática e Informática Industrial Vol. 10 (2013), pp.121-132.
DOI: 10.1016/j.riai.2013.03.002
Google Scholar
[11]
S. Formentin and A. Karimi: A data-driven approach to mixed-sensitivity control with application to an active suspension system, IEEE Transactions on Industrial Informatics Vol. 9 (2013), pp.2293-2300.
DOI: 10.1109/tii.2012.2220556
Google Scholar
[12]
S. Lavanya and K. Rajeswari: Look-ahead fuzzy logic controller for vehicle suspension system, Proceedings of the International Conference on Emerging Trends in Computing, Communication and Nanotechnology, pp.634-639 (2013).
DOI: 10.1109/ice-ccn.2013.6528577
Google Scholar
[13]
V. Patil, G. Pawar and S. Patil: A comparative study between the vehicles passive and active suspensions, International Journal of Engineering Research and Applications Vol. 3 (2013), pp.774-777.
Google Scholar
[14]
V. Ţoţu and C. Alexandru: Multi-criteria kinematic optimization of a front multi-link suspension mechanism using DOE screening and regression model, Applied Mechanics and Materials Vol. 332 (2013), pp.351-356.
DOI: 10.4028/www.scientific.net/amm.332.351
Google Scholar
[15]
V. Ţoţu and C. Alexandru: Dynamic analysis of a multi-link suspension mechanism with compliant joints, Bulletin of the Transilvania University of Braşov - Series I Vol. 6 (2013), pp.33-38.
Google Scholar