[1]
information at http: /www. who. int/disabilities/technology/jpp/en.
Google Scholar
[2]
National Stroke Association. Information at: http: /www. stroke. org.
Google Scholar
[3]
Consequences of stroke, information at http: /www. uhnj. org/stroke/stats. htm.
Google Scholar
[4]
Gregg EW et al.: Physical activity, falls, and fractures among older adults: a review of the epidemiologic evidence. J Am Geriatr Soc. 2000 Aug; 48(8): 883-93.
DOI: 10.1111/j.1532-5415.2000.tb06884.x
Google Scholar
[5]
Fisher SV, Gullickson G Jr.: Energy cost of ambulation in health and disability: a literature review. Arch Phys Med Rehabil. 1978 Mar; 59(3): 124-33.
Google Scholar
[6]
Marie-Louise Bird et al.: Age-Related Changes in Physical Fall Risk Factors: Results from a 3 Year Follow-up of Community Dwelling Older Adults in Tasmania, Australia. Int. J. Environ. Res. Public Health 2013, 10, 5989-5997.
DOI: 10.3390/ijerph10115989
Google Scholar
[7]
Grimpampi E, et al.: Estimate of lower trunk angles in pathological gaits using gyroscope data. Gait Posture (2013), http: /dx. doi. org/10. 1016/j. gaitpost. 2013. 01. 031.
DOI: 10.1016/j.gaitpost.2013.01.031
Google Scholar
[8]
T. Herman.: Gait instability and fractal dynamics of older adults with a cautious" gait: why do certain older adults walk fearfully,. Gait and Posture 21 (2005) 178–185.
DOI: 10.1016/j.gaitpost.2004.01.014
Google Scholar
[9]
Bruijn SM et al.: Assessing the stability of human locomotion: a review of current measures. J R Soc Interface 10: 20120999. http: /dx. doi. org/10. 1098/rsif. 2012. 0999.
Google Scholar
[10]
Robert Teasell et al.: The Elements of Stroke Rehabilitation available at: http: /www. ebrsr. com.
Google Scholar
[11]
Clinical Guidelines for Stroke Management information at: http: /strokefoundation. com. au.
Google Scholar
[12]
Information at: http: /www. rcplondon. ac. uk/resources/stroke-guidelines.
Google Scholar
[13]
International classification of functioning, disability, and health. Geneva: WHO, (2001).
Google Scholar
[14]
Nicholas Stergiou et al.: A Perspective on Human Movement Variability With Applications in Infancy Motor Development. Kinesiology Review, 2013, 2, 93-102.
DOI: 10.1123/krj.2.1.93
Google Scholar
[15]
Anindo Roy et al.: Changes in passive ankle stiffness and its effects on gait function in people with chronic stroke. JRRD Volume 50 Number 4, 2013, Pages 555 — 572.
DOI: 10.1682/jrrd.2011.10.0206
Google Scholar
[16]
information at: http: /circ. ahajournals. org/content/109/16/2031. full. pdf+html.
Google Scholar
[17]
Svetlana Grosu et al.: Human motor adaptation vs. BMI value in conditions of low and high exoskeleton robot compliance: experimental data observations. 9th National Congress on Theoretical and Applied Mechanics, Brussels, 9-10-11 May (2012).
Google Scholar
[18]
Jeffrey M Hausdorff: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking Hum Mov Sci. 2007 August ; 26(4): 555–589.
DOI: 10.1016/j.humov.2007.05.003
Google Scholar
[19]
Lord S. et al.: Gait variability in older adults: a structured review of testing protocol and clinimetric properties. Gait Posture. 2011 Oct; 34(4): 443-50.
DOI: 10.1016/j.gaitpost.2011.07.010
Google Scholar
[20]
Michael J. Socie et al: Gait Variability and Multiple Sclerosis. MultSclerInt. 2013: 645197.
Google Scholar
[21]
Nadeau, Stephen et al: Effects of Task-Specific and Impairment-Based Training Compared With Usual Care on Functional Walking Ability After Inpatient Stroke Rehabilitation: LEAPS Trial. Neurorehab and neural repair. Volume: 27, Issue: 4, Pages: 370-380, MAY (2013).
DOI: 10.1177/1545968313481284
Google Scholar
[22]
Vijaya Kumar et al.: Effects of Mental Practice on Functional Mobility and Quality of Life in Ambulant Stroke Subjects. IJSR. Vol.: 2, Issue : 5, May 2013. Pages: 434-437.
Google Scholar
[23]
Chutima Jalayondeja et al: Factors related to community participation by stroke victims six month post-stroke. Southeast Asian J TropMed PublicHealth. Vol 42 No. 4 July 2011, pages: 1005-1013.
Google Scholar
[24]
Eskes G, Salter K: Chapter 7: Mood and Cognition in Stroke. In Lindsay MP et al. (Eds): Canadian Best Practice Recommendations for Stroke Care: 2013; Ottawa, Canadian Stroke Network.
Google Scholar
[25]
Van Rijsbergen MWAet al. The COMPlaints After Stroke (COMPAS) study: protocol for a Dutch cohort study on poststroke subjective cognitive complaints. BMJ Open 2013; 3: e003599.
DOI: 10.1136/bmjopen-2013-003599
Google Scholar
[26]
Eglė Milinavičienė et al: Effectiveness of the Second-Stage Rehabilitation in Stroke Patients With Cognitive Impairment. Medicina (Kaunas) 2011; 47(9): 486-93.
DOI: 10.3390/medicina47090074
Google Scholar
[27]
Luisa Terroni et al.: Association among depression, cognitive impairment and executive dysfunction after stroke. Dement Neuropsychol 2012 September; 6(3): 152-157.
DOI: 10.1590/s1980-57642012dn06030007
Google Scholar
[28]
Lars Lünenburger et al. Review. Biofeedback for robotic gait rehabilitation. Journal of NeuroEngineering and Rehabilitation 2007, 4: 1. http: /www. jneuroengrehab. com/content/4/1/1.
DOI: 10.1186/1743-0003-4-1
Google Scholar
[29]
Susan P. Barker. Changes in Gait, Balance, and Function with Vestibular Rehabilitation. Thesis. UMI Microform 3126514. Copyright 2004 by ProQuest.
Google Scholar
[30]
Ada, Louise et al: Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: a systematic review. Journal of physiotherapy. Volume: 56, Issue: 3, Pages: 153-161. (2010).
DOI: 10.1016/s1836-9553(10)70020-5
Google Scholar
[31]
Candace Tefertiller et al. Efficacy of rehabilitation robotics for walking training in neurological disorders: A review. JRRD, Volume 48, Number 4, 2011, pages: 387–416.
DOI: 10.1682/jrrd.2010.04.0055
Google Scholar
[32]
Won Hyuk Chang, Yun-Hee Kim: Robot-assisted Therapy in Stroke Rehabilitation. Review. Journal of Stroke 2013; 15(3): 174-181.
Google Scholar
[33]
Catarina O Sousa et al. The use of body weight support on ground level: an alternative strategy for gait training of individuals with stroke. J NeuroEng and Rehab 2009, 6: 43.
Google Scholar
[34]
WHO - Health technology assessment, http: /www. who. int/medical_devices/assessment/en.
Google Scholar
[35]
INAHTA available at: http: /www. inahta. org.
Google Scholar
[36]
Raphael Banz et al. Computerized Visual Feedback: An Adjunct to Robotic-Assisted Gait Training. Physical Therapy Volume 88 Number 10. Pages: 1135-1145.
DOI: 10.2522/ptj.20070203
Google Scholar
[37]
Andrew Pennycott et al.: Towards more effective robotic gait training for stroke rehabilitation: a review. Journal of NeuroEngineering and Rehabilitation 2012, 9: 65.
DOI: 10.1186/1743-0003-9-65
Google Scholar
[38]
Foley Norine et al: Mobility and the Lower Extremity, in Evidence Based Review of Stroke Rehabilitation, last uptaded: Dec. 2013. available at: http: /www. ebrsr. com/reviews_list. php.
Google Scholar
[39]
Hermano I. Krebs et al.: A Paradigm Shift for Rehabilitation Robotics: Therapeutic Robots Enhance Clinician Productivity in Facilitating Patient Recovery. IEEE Eng Med Biol Mag. 2008 ; 27(4): 61–70.
Google Scholar
[40]
Annalisa Milella et al (Eds): Mechatronic Systems, Applications. 2010 www. intechweb. org.
Google Scholar
[41]
Polese, JC et al: Treadmill training is effective for ambulatory adults with stroke: a systematic review. J OF Physiotherapy, Volume: 59 , Issue: 2 , Pages: 73-80. (2013).
DOI: 10.1016/s1836-9553(13)70159-0
Google Scholar
[42]
Web of Knowledge.
Google Scholar
[43]
Ariel A. A. Braidot et al: Design of a mechanical system in gait rehabilitation with progressive addition of weight. Journal of Physics: Conference Series 332 (2011) 012045.
DOI: 10.1088/1742-6596/332/1/012045
Google Scholar
[44]
Wang P et al.: Modulation of weight off-loading level over body-weight supported locomotion training. IEEE Int Conf Rehabil Robot. 2011; 2011: 5975354.
DOI: 10.1109/icorr.2011.5975354
Google Scholar
[45]
States, Rebecca A. et al: Overground Gait Training for Individuals with Chronic Stroke: A Cochrane Systematic Review. J NEUROL PHYS THER. Vol: 33, Issue: 4, Pages: 179-186. (2009).
DOI: 10.1097/npt.0b013e3181c29a8c
Google Scholar
[46]
Wessels M. et al.: Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med. 2010 Jun; 42(6): 513-9.
DOI: 10.2340/16501977-0525
Google Scholar
[47]
Vallery H et al.: Multidirectional transparent support for overground gait training. IEEE Int Conf Rehabil Robot. 2013 Jun; 2013: 1-7.
Google Scholar
[48]
Wang P et al.: Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits. IEEE Int Conf Rehab Robot. 2011: 5975353.
DOI: 10.1109/icorr.2011.5975353
Google Scholar
[49]
Hidler, Joseph et al.: ZeroG: Overground gait and balance training system. Journal of Rehabilitation Research and Development48. 4 (2011): 287-98.
DOI: 10.1682/jrrd.2010.05.0098
Google Scholar
[50]
Patton, James et al.: KineAssist: Design and Development of a Robotic Overground Gait and Balance Therapy Device. Topics in Stroke Rehabilitation15. 2 (Mar/Apr 2008): 131.
DOI: 10.1310/tsr1502-131
Google Scholar
[51]
Wang, Ping et al.: Initial System Evaluation of an Overground Rehabilitation Gait Training Robot (NaTUre-gaits). ADVANCED ROBOTICS. Vol: 25, Issue: 15, Pages: 1927-1948. (2011).
DOI: 10.1163/016918611x587214
Google Scholar
[52]
NatureGait Systems info – available at http: /www. youtube. com/watch?v=1iIAGgGAwbc.
Google Scholar
[53]
Kineassist info available at: http: /www. kineadesign. com/portfolio/kineassist.
Google Scholar
[54]
Sousa et al. Gait training with partial body weight support during overground walking for individuals with chronic stroke: a pilot study. http: /www. jneuroengrehab. com/content/8/1/48.
DOI: 10.1186/1743-0003-8-48
Google Scholar
[55]
http: /www. bioness. com/Healthcare_Professionals/Vector_Gait_and_Safety_System. php.
Google Scholar
[56]
Vallery H et al.: Multidirectional transparent support for overground gait training. IEEE Int Conf Rehabil Robot. 2013 Jun; 2013: 1-7.
Google Scholar
[57]
A. Mokhtarian et al.: An Assistive Passive Pelvic Device for Gait Training and Rehabilitation Using Locomotion Dynamic Model. Indian JSciTech, Vol 6(3), 2013: 4168-4181.
DOI: 10.17485/ijst/2013/v6i3.1
Google Scholar
[58]
http: /www. asee. org/documents/sections/middle-atlantic/fall-2013/12-Paper-Kumar. pdf.
Google Scholar
[59]
1st Joint World Congress on Gait and Mental Function abstracts, available at http: /ispgr. silkstart. com/down.
Google Scholar
[60]
RELIVE. Sistem mecatronic de realitate 3D pentru recuperarea ambientala a pacientilor cu afectiuni neurologice centrale, http: /www. omtr. pub. ro/cesit/granturi/RELIVE/index. html.
Google Scholar