The Influence of Vitamin C on the Oxidative Stress in Untrained Smoking Subjects

Article Preview

Abstract:

Some researchers that have analyzed the connection between physical effort and oxidative stress parameters have reported changes, that is increase, decrease or stagnation of these biochemical indicators measured afterphysical effort. It is a known fact that the people who smoke are exposed to oxidative stress, which is accelerated during physical exercise. The study aims to assess the changes that occur following easy physical exercise, dosed at 50 % of maximal aerobic power, performed for 40 minutes on the cycle ergometer, and after the administration of 1000 mg of vitamin C, 12 hours before the same type of effort, on indicators of oxidative stress in untrained smokers. The evaluation of the VO2max, for the accurate calculation of maximal aerobic power and the percentage of the workout, was done by ergospirometry with aFitMate PRO Cosmed device. There were recorded changes in the activity of the superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde concentration, which certifies the acceleration of oxidative stress after strenuous efforts of the subjects whereas after the administration of vitamin C, improvements have been achieved . The results lead to the recommendation of introducing vitamin C in the diet of the people who smoke and exercise regularly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

713-722

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Alessio HM, Goldfarb AH, Cutler RG. MDA content increases in fast-andslow-twitchskeletalmusclewithintensity of exercise in a rat. Am J PhysiolCell Physiol1988; 255: C874–C877.

DOI: 10.1152/ajpcell.1988.255.6.c874

Google Scholar

[2] Araújo M, Leandro Pereira de Mour, Carla Ribeiro, Rodrigo Dalia, Fabrício A. Voltarelli, Maria Alice de Mello. Oxidative stress in theliver of exercisedratssupplementedwith creatine, International Journal of Nutritionand Metabolism 2011; 3: 58-64.

Google Scholar

[3] Arts FJ, H. Kuipers, A. E. JeukendrupSaris WH. A shortCycleErgometer Test toPredict Maximal Workloadand maximal OxygenUptake. Int J Sports Med 1993; 14: 460–464.

DOI: 10.1055/s-2007-1021211

Google Scholar

[4] Asghar M, George L, Lokhandwala MF. Exercisedecreases oxidative stressandinflammationandrestores renal dopamine D1 receptor function in old rats. Am J Physiol Renal Physiol 2007; 293: 914-9.

DOI: 10.1152/ajprenal.00272.2007

Google Scholar

[5] Barclay JK, Hansel M. Freeradicalsmaycontributeto oxidative skeletalmusclefatigue. Can J PhysiolPharmacol 1991; 69: 279–284.

Google Scholar

[6] Ciobica A, Hritcu L, Nastasa V, Padurariu M, Bild W. Inhibition of central angiotensinconvertingenzymeexertsanxiolyticeffectsbydecreasingbrain oxidative stress. Journal of Medical Biochemistry 2011; 30: 109–14.

DOI: 10.2478/v10011-011-0009-3

Google Scholar

[7] Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K, GrintonS. Highintensitytraining-inducedchanges in skeletalmuscle antioxidant enzymeactivity. MedSciSportsExerc 1993; 25: 1135–1140.

DOI: 10.1249/00005768-199310000-00009

Google Scholar

[8] Diaz PT, Costanza MJ, Wright VP, Julian MW, Diaz JA, Clanton TL. Dithiothreitolimprovesrecoveryfrom in vitro diaphragmfatigue. Med SciSportsExerc 1998; 30: 421–426.

Google Scholar

[9] Evelo CT, Palmen NG, Artur Y, Janssen GM. Changes in bloodglutathioneconcentrations, and in erythrocyteglutathionereductaseandglutathioneStransferaseactivityafterrunning training andafterparticipation in contests. Eur J ApplPhysiol 1992; 64: 354–358.

Google Scholar

[10] Fang YZ, Yang S, Wu G. Freeradicals, antioxidants, andnutrition. Nutrition. 2002; 18: 872-9.

Google Scholar

[11] Gohil K, Packer L, de Lumen B, Brooks GA, Terblanche SE. Vitamin E deficiencyandvitamin C supplements: exerciseandmitochondrialoxidation. J ApplPhysiol 1986; 60: 1986-91.

DOI: 10.1152/jappl.1986.60.6.1986

Google Scholar

[12] Goldfarb AH, McIntosh MK, Boyer BT, Fatouros J. Vitamin E effects on indexes of lipidperoxidation in musclefrom DHEA treatedandexercisedrats. J ApplPhysiol 1994; 76: 1630–1635.

DOI: 10.1152/jappl.1994.76.4.1630

Google Scholar

[13] Goto S, Radák Z, Nyakas C, Chung HY, Naito H, Takahashi R et al. Regular exercise: an effectivemeansto reduce oxidative stress in old rats. Ann N Y Acad Sci 2004; 1019: 471-4.

DOI: 10.1196/annals.1297.085

Google Scholar

[14] Grant S, K Corbett, A M Amjadt, J Wilson, Aitchisont T. A comparison of methods of predicting maximum oxygenuptake, Br. J. Sports Med 1995; 29: 147-152.

Google Scholar

[15] Halliwell B, Gutteridge JMC. Free Radical in BiologyandMedicine. 2007, 4th ed. New York: Oxford University Press.

Google Scholar

[16] Hellsten Y, Apple FS, SjodinB. Effect of sprint cycle training on activities of antioxidant enzymes in humanskeletalmuscle. JAppl Physiol1996; 81: 1484–1487.

DOI: 10.1152/jappl.1996.81.4.1484

Google Scholar

[17] Higuchi M, Cartier LJ, Chen M, HolloszyJO. Superoxidedismutaseandcatalase in skeletalmuscle: adaptive responsetoexercise. J Gerontol1985; 40: 281–286.

Google Scholar

[18] Jackson MJ, Edwards RH, Symons MC. Electron spin resonancestudies of intact mammalianskeletalmuscle. BiochimBiophys Acta 1985; 847: 185–190.

Google Scholar

[19] Ji LL. Antioxidant enzymeresponsetoexerciseandaging. Med SciSportsExerc 1993; 25: 225–231.

Google Scholar

[20] Ji LL. Antioxidantsand oxidative stress in exercise. Proc Soc Exp Biol Med 1999; 222: 283-92.

Google Scholar

[21] Ji LL. Exerciseand oxidative stress: role of thecellular antioxidant systems. Exerc SportSciRev 1995; 23: 135–166.

Google Scholar

[22] Kanter MM, Nolte LA, Holloszy JO. Effects of an antioxidant vitaminmixture on lipidperoxidation at rest andpostexercise. J ApplPhysiol 1993; 74: 965-9.

Google Scholar

[23] Karanth J, Kumar R, JeevaratnamK. Response of antioxidant system in ratstodietaryfatandphysicalactivity. Indian J Physiol Pharmacol2004; 48: 446–452.

Google Scholar

[24] Khawli FA, Reid MB. N-acetylcysteinedepresses contractile functionandinhibitsfatigue of diaphragm in vitro. J ApplPhysiol 1994; 77: 317–324.

Google Scholar

[25] Knuttgen HG, Francesco Conconi, HarmKuipers, Per. Renstrom, Richard Strauss. Endurance in sport, volume i1 of theencyclopedia of sportsmedicine. BlackwellScience Ltd, (2000).

Google Scholar

[26] Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-CuriTC. Effects of aerobic exercise training on antioxidant enzymeactivitiesandmRNAlevels in soleusmusclefromyoungandagedrats. MechAgeing Dev2007; 128: 267–275.

DOI: 10.1016/j.mad.2006.12.006

Google Scholar

[27] Lawler JM, Kwak HB, Song W, Parker JL. Exercise training reversesdownregulation of HSP70 and antioxidant enzymes in porcine skeletalmuscleafterchroniccoronaryarteryocclusion. Am J PhysiolRegulIntegr Comp Physiol2006; 291: R1756–R1763.

DOI: 10.1152/ajpregu.00271.2006

Google Scholar

[28] Leeuwenburgh C, Fiebig R, Chandwaney R, JiLL. Agingandexercise training in skeletalmuscle: responses of glutathioneand antioxidant enzymesystems. Am J PhysiolRegulIntegr Comp Physiol1994; 267: R439–R445.

Google Scholar

[29] Leeuwenburgh C, Hollander J, Leichtweis S, Griffiths M, Gore M, Ji LL. Adaptations of glutathione antioxidant systemtoendurance training are tissueandmusclefiber specific. Am J PhysiolRegulIntegr Comp Physiol1997; 272: R363–R369.

DOI: 10.1152/ajpregu.1997.272.1.r363

Google Scholar

[30] Novelli GP, Bracciotti G, Falsini S. Spin-trappersandvitamin E prolongendurancetomusclefatigue in mice. FreeRadic Biol Med 1990; 8: 9–13.

Google Scholar

[31] Oh-ishi S, Kizaki T, Nagasawa J, Izawa T, Komabayashi T, Nagata N, Suzuki K, Taniguchi N, OhnoH. Effects of endurance training on superoxidedismutaseactivity, content andmRNAexpression in ratmuscle, ClinExpPharmacol Physiol1997; 24: 326–332.

DOI: 10.1111/j.1440-1681.1997.tb01196.x

Google Scholar

[32] Ohno H, Suzuki K, Fujii J, Yamashita H, Kizaki T, Oh-ishi S, Taniguchi N. Superoxidedismutases in exerciseanddisease. ExerciseandOxygenToxicity 1994; 1: 127–161.

Google Scholar

[33] Oztasan N, Seyithan T, Kenan GKA, Omer A, Handan TES, Sait K et al. Endurance training attenuatesexercise-induced oxidative stresserythrocytes in rat. Eur. J. App. Physiol 2004; 91: 622-627.

Google Scholar

[34] Packer L, Almada AL, Rothfuss LM, Wilson DS. Modulation of tissuevitamin E levelsbyphysicalexercise. Ann N Y Acad Sci 1989; 570: 311-21.

Google Scholar

[35] Packer L, Gohil K, deLumen B, Terblanche SE. A comparative study on theeffects of ascorbic acid deficiencyandsupplementation on enduranceandmitochondrial oxidative capacities in varioustissues of theguineapig. Comp BiochemPhysiol B 1986; 83: 235-40.

DOI: 10.1016/0305-0491(86)90359-7

Google Scholar

[36] Powers SK, Criswell D, Lawler J, Martin D, Ji LL, Herb RA, DudleyG. Regionaltraining-inducedalterations in diaphragmatic oxidative and antioxidant enzymes. Respir Physiol1994; 95: 227–237.

DOI: 10.1016/0034-5687(94)90118-x

Google Scholar

[37] Powers SK, Jackson MJ. Exercise-Induced Oxidative Stress: cellular mechanisms and Impact on Muscle Force Production. Physiol Rev2008; 88: 1243–1276.

DOI: 10.1152/physrev.00031.2007

Google Scholar

[38] QuintanilhaAT. Effects of physicalexerciseand/or vitamin E on tissue oxidative metabolism. Biochem Soc Trans1984; 12: 403–404.

Google Scholar

[39] Rahman K. Studies on freeradicals, antioxidants, andco-factors. Clin IntervAging 2007; 2: 219–236.

Google Scholar

[40] Reid MB, Khawli FA, Moody MR. Reactive oxygen in skeletalmuscle. III. Contractility of unfatiguedmuscle. J ApplPhysiol 1993; 75: 1081–1087.

Google Scholar

[41] Reid MB, Shoji T, Moody MR, Entman ML. Reactive oxygen in skeletalmuscle. II. Extracellularrelease of freeradicals. J ApplPhysiol 1992; 73: 1805–1809.

Google Scholar

[42] Reid MB. Redoxmodulation of skeletalmusclecontraction: whatweknowandwhatwedon't. J ApplPhysiol 2001; 90: 724–731.

Google Scholar

[43] Robertson JD, Maughan RJ, Duthie GG, Morrice PC. Increasedblood antioxidant systems of runners in responseto training. Clin Sci 1991; 80: 611–618.

DOI: 10.1042/cs0800611

Google Scholar

[44] Sentürk UK, Gündüz F, Kuru O, Aktekin MR, Kipmen D, Yalçin O et al. Exercise-induced oxidative stressaffectserythrocytes in sedentaryrats but notexercise-trainedrats. J ApplPhysiol 2001; 91: 1999-(2004).

DOI: 10.1152/jappl.2001.91.5.1999

Google Scholar

[45] Sinha AK. Colorimetric assay of catalase. Anal. Biochem 1972; 47: 389–394.

Google Scholar

[46] Somani SM, Frank S, Rybak LP. Responses of antioxidant systemto acute andtrainedexercise in ratheartsubcellularfractions. Pharmacology, BiochemistryandBehavior 1995; 51, 627–634.

Google Scholar

[47] Stefanescu C, Ciobica A. The relevance of oxidative stress status in firstepisodeandrecurrentdepression. J AffectDisord 2012; 143: 34-8.

Google Scholar

[48] Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Enduranceexercisecausesmitochondrialand oxidative stress in ratliver: effects of a combination of mitochondrialtargetingnutrients. Life Sci 2010; 86: 39-44.

Google Scholar

[49] Tiidus PM, Pushkarenko J, Houston ME. Lack of antioxidant adaptationtoshortterm aerobic training in humanmuscle. Am J Physiol 1996; 271: 832–836.

Google Scholar

[50] Venditti P, Di MeoS. Antioxidants, tissuedamage, endurance in trainedanduntrainedyoungmalerats. ArchBiochem Biophys1996; 331: 63–68.

Google Scholar

[51] Venditti P, Di Meo S, Effect of training on antioxidant capacity, tissuedamage, endurance of adult malerats. Int J Sports Med1997, 18: 497–502.

DOI: 10.1055/s-2007-972671

Google Scholar

[52] Vincent HK, Powers SK, Demirel HA, Coombes JS, NaitoH. Exercise training protectsagainstcontraction-inducedlipidperoxidation in thediaphragm, Eur J ApplPhysiolOccup Physiol1999; 79: 268–273.

Google Scholar

[53] Vincent HK, Powers SK, Stewart, DJ, Demirel HA, Shanely RA, Naito H. Short-termexercise training improvesdiaphragm antioxidant capacityandendurance, Eur J Appl Physiol2000; 81: 67–74.

DOI: 10.1007/pl00013799

Google Scholar

[54] Yu F, Lu S, Feng S, McGuire PM, Li R, Wang R. Protective effects of polysaccharidefromEuphorbiakansui (Euphorbiaceae) on theswimmingexercise-induced oxidative stress in mice. Canadian Journal of PhysiologyandPharmacology 2006; 84: 1071–1079.

DOI: 10.1139/y06-052

Google Scholar