Cost Optimization in Manufacturing System with Unidirectional AGVs

Article Preview

Abstract:

This paper presents an example of optimization of an automated manufacturing system comprising a transport subsystem based on the automated guided vehicles (AGV). Number of resources in the manufacturing system and the number and location of the AGVs were subject of optimization. Profit maximization was assumed as an objective function. Arena and OptQuest software were used to build the simulation model and perform the optimization. The article describes an original solution for optimizing the number and cost of AGVs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

822-828

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. F. Kahraman, A. Gosavi, K. J. Oty: Stochastic Modeling of an Automated Guided Vehicle System With One Vehicle and a Closed-Loop Path. IEEE Transactions on Automation Science and Engineering, Vol. 5, No. 3, July (2008).

DOI: 10.1109/tase.2008.917015

Google Scholar

[2] K. -C. Ko, P. J. Egbelu: Unidirectional AGV guidepath network design: a heuristic algorithm. International Journal of Production Research, Vol. 41, No. 10, (2003), pp.2325-2343.

DOI: 10.1080/0020754031000087201

Google Scholar

[3] T. Le-Anh, M.B.M. De Koster: A review of design and control of automated guided vehicle systems. European Journal of Operational Research, Vol. 171, (2006), p.1–23.

DOI: 10.1016/j.ejor.2005.01.036

Google Scholar

[4] T. Le-Anh, M.B.M. De Koster: Multi-Attribute Dispatching Rules For AGV Systems With Many Vehicles, http: /repub. eur. nl/res/pub/1809/ERS 2004 077 LIS. pdf.

Google Scholar

[5] A. Osyczka, S. Krenich: Evolutionary Algorithms for Global Optimization, Chapter in J. Pinter (Ed. ) Global Optimization – Scientific and Engineering Case Studies. Springer, 2006, pp.267-300.

Google Scholar

[6] L. Qiu, W. Hsu, S. Huang, H. Wang: Scheduling and routing algorithms for AGVs: A survey. International Journal of Production Research, Vol. 40, No. 3, (2002), p.745–760.

DOI: 10.1080/00207540110091712

Google Scholar

[7] S. Reveliotis: Conflict resolution in AGV systems. IIE Transactions, Vol. 32, No. 7, (2000), pp.647-659.

DOI: 10.1080/07408170008967423

Google Scholar

[8] S. Takakuwa: Design and Cost-Effectiveness Analysis of Large-Scale AS/RS-AGV Systems. Proceedings of the 1993 Winter Simulation Conference.

DOI: 10.1109/wsc.1993.718329

Google Scholar

[9] I.F.A. Vis, R. de Koster, K.J. Roodbergen, L.W.P. Peeters: Determination of the number of automated guided vehicles required at a semi-automated container terminal. Journal of the Operational Research Society, Vol. 52, (2001), p.409–417.

DOI: 10.1057/palgrave.jors.2601094

Google Scholar

[10] J. Zając, G. Chwajoł: Koncepcja integracji rozproszonego systemu sterowania produkcją AIM z podsystemem transportu międzyoperacyjnego zbudowanym z autonomicznych robotów mobilnych, PAR, Nr 2, (2011), s. 392-401.

DOI: 10.15199/148.2018.12.2

Google Scholar