Multi-Target Direction Measurement of Bistatic MIMO Radar

Article Preview

Abstract:

Multiple-input multiple output (MIMO) radar has been widespread concern in the domestic and foreign researchers. Bistatic radar draws on the great success of MIMO technology in the communications field, and it has many advantages over conventional radar. The direction angles estimations of bistatic MIMO radar are researched. To contrast traditional radar DOA estimates, the direction vector of the bistatic MIMO radar is the Knonecker plot of the emission vector and reception vector, that two-dimensional direction angles is estimated. To solve this problem, the principle of bistatic MIMO radar signal model is in-depthly researched.By proposing Capon dimensionality reduction method, the two-dimensional directions of the dual-based MIMO radar are estimated, and computer simulation is to verify the effectiveness of the method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2797-2801

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] He Zishu, Han Chunlin, Liu Bo. MIMO radar concept and technical characteristics [J]. E-Journal, 2005, 33 (12A): 2441-2445.

Google Scholar

[2] Xu Hongbo, Wang Huaijun, Lu Min, a new MIMO radar DOA estimation method [J] Journal of the National University of Defense Technology, 2009, 31 (3): 92-96.

Google Scholar

[3] Xu Hongbo MIMO radar DOA estimation algorithm [J]. Changsha: National Defense University, (2009).

Google Scholar

[4] Ju Ting Wang, Jiang Shengli, Jin Ho. Impulsive noise, MIMO radar based on subspace DOA estimation [J]. Journal of Astronautics, 2009, 30 (4): 1653-1657.

Google Scholar

[5] Wang Ju Ting, Jiang Shengli, Liu composite Gaussian clutter MIMO radar DOA estimation, Cramer - Rao lower bound [J]. Electronics & Information Technology, 2009, 31 (4): 786-789.

Google Scholar

[6] Dai Hei increase, Peng Ning, Tang Jun MIMO radar detection performance [J]. Tsinghua University (Natural Science), 2007, 47 (1): 88-91.

Google Scholar

[7] Qujin You, ROCKETS, Chunsheng. Waveform has any correlation of MIMO radar detection performance [J]. Circuits and Systems, 2009, 14 (2): 68-73.

Google Scholar

[8] Wang Ju Ting, Jiang Shengli, Jin Ho. Airborne MIMO radar generalized maximum likelihood detector [J]. Electronics and Information Technology, 2009, 31 (6): 1315-1318.

Google Scholar

[9] Ghobadzadeh A, Tadaion A A, Taban M R. GLR approach for MIMO radar signal sampling in unknown clutter parameter[C]. International Symposium on Telecommunications, Tehran, 2008: 624-628.

DOI: 10.1109/istel.2008.4651376

Google Scholar

[10] Sheikhi A, Zamani A, Norouzi Y. Model-based adaptive target detection in clutter using MIMO radar[C]. CIE International Conference on Radar, Shanghai, 2006: 1-4.

DOI: 10.1109/icr.2006.343477

Google Scholar

[11] Sheikhi A, Zamani A. Coherent detection for MIMO radars[C]. IEEE Radar Conference, Boston, MA, 2007: 302-307.

DOI: 10.1109/radar.2007.374232

Google Scholar

[12] Xu L Z, Li J. Iterative generalized - likelihood ratio test for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2375-2385.

DOI: 10.1109/tsp.2007.893937

Google Scholar

[13] Li J, Stoica P, Xu L Z, et al. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 968-971.

DOI: 10.1109/lsp.2007.905051

Google Scholar

[14] Xu L Z, Li J, Stoica P. Adaptive techniques for MIMO radar[C]. The 4th IEEE Workshop on Sensor Array and Multichannel Signal Processing, Waltham, MA, 2006: 258-262.

Google Scholar

[15] Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873-3838.

DOI: 10.1109/tsp.2006.879267

Google Scholar