Improved Maximum-Minimum Eigenvalue Detection with a Single Antenna Using Jackknifing

Article Preview

Abstract:

Spectrum sensing is critical for cognitive radio networks as it allows a secondary user to find spectrum holes for opportunistic reuse. In this paper, an improved maximum-minimum eigenvalue detection method is proposed for a cognitive user equipped with a single receiving antenna. The proposed method utilizes the temporal smoothing technique to form a virtual multiple antennas structure. At the same time, the jackknifing resampling strategy is employed to improve the detection performance. Simulation results are presented to verify the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2806-2809

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Haykin: Cognitive radio: brain-empowered wireless communications, IEEE Journal of Selected Areas in Communications, vol. 23, no. 2, pp.201-220 (2005).

DOI: 10.1109/jsac.2004.839380

Google Scholar

[2] T. Yucek and H. Arslan: A survey of spectrum sensing algorithms for cognitive radio applications, IEEE Communications Surveys and Tutorials, vol. 11, no. 1, pp.116-130 (2009).

DOI: 10.1109/surv.2009.090109

Google Scholar

[3] Y.H. Zeng, L.K. Choo and Y.C. Liang: Maximum eigenvalue detection: theory and application, IEEE International Conference on Communications, pp.5076-5080 (2008).

Google Scholar

[4] Y.H. Zeng and Y.C. Liang: Maximum-minimum eigenvalue detection for cognitive radio, Proceedings of the 18th International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1165-1169 (2007).

DOI: 10.1109/pimrc.2007.4394211

Google Scholar

[5] Y.H. Zeng and Y.C. Liang: Eigenvalue-based pectrum sensing algorithms for cognitive radio, IEEE Transactions on Communications, vol. 57, no. 6, pp.1784-1793 (2009).

DOI: 10.1109/tcomm.2009.06.070402

Google Scholar

[6] Y.H. Zeng and Y.C. Liang: Robust spectrum sensing in cognitive radio, IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communications Workshops, pp.129-134 (2010).

DOI: 10.1109/pimrcw.2010.5670361

Google Scholar

[7] N. Pillay, H.J. Xu: Blind eigenvalue-based spectrum sensing for cognitive radio networks, IET Communications, vol. 6, no. 11, pp.1388-1396 (2012).

DOI: 10.1049/iet-com.2011.0506

Google Scholar

[8] A. Kortun, T. Ratnarajah, M. Sellathurai, C. Zhong and C.B. Papadias: On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio, IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 1, pp.49-55 (2011).

DOI: 10.1109/jstsp.2010.2066957

Google Scholar

[9] F.L. Liu, J.K. Wang and R.Y. Du: Unitary-JAFE algorithm for joint angle-frequency estimation based on Frame-Newton method, Signal Processing, vol. 90, no. 3, pp.809-820 (2010).

DOI: 10.1016/j.sigpro.2009.08.013

Google Scholar

[10] F.L. Liu, S.M. Guo and Y.X. Sun: Primary user signal detection based on virtual multiple antennas for cognitive radio networks, Progress In Electromagnetics Research C, vol. 42, pp.213-227 (2013).

DOI: 10.2528/pierc13061801

Google Scholar

[11] N. Pratas, N. Marchetti, N.R. Prasad, A. Rodrigues and R. Prasad: Adaptive counting rule for cooperative spectrum sensing under correlated environments, Wireless Personal Communications, vol. 64, no. 1, pp.93-106 (2012).

DOI: 10.1007/s11277-012-0519-4

Google Scholar