Analysis and Improvement of Combination Rule in D-S Theory

Article Preview

Abstract:

In this paper, the evidence combination principle of Dempster-Shafer (D-S) evidence theory is analyzed in detail. And the method of evidence combination is improved because of the deficiency of D-S evidence theory. Considering the principle“the minority should be subordinate to the majority”, based on Yager’s rule, we put forward a new effective combination rule which works more reasonably.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3930-3934

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dempster A: Upper and lower probabilities induced by multivalued mapping. Annals of Mathematical Statistics, Vol. 38(1967). pp.325-339.

DOI: 10.1214/aoms/1177698950

Google Scholar

[2] Shafer G. A: Mathematical Theory of Evidence. Princeton: Princeton University Press, (1976).

Google Scholar

[3] XU Cong-fu, GENG Wei-dong: Review of Dempster –Shafer Method for data fusion. Acta Electronica Sinica. Vol. 29(2001): pp.393-396.

Google Scholar

[4] Otman Basir , Yuan X H: Engine fault diagnosis based onmulti-sensor information fusion using Dempster - Shaferevidence theory . Information Fusion, Vol. 8(2007): pp.379-386.

DOI: 10.1016/j.inffus.2005.07.003

Google Scholar

[5] Yager RR: On the Dempster Shafer approach to diagnosing hierarchical hypotheses. Communication of ACM, Vol. 32(1989): pp.573-585.

DOI: 10.1145/63485.63488

Google Scholar

[6] Yager RR: On the aggregation of prioritized belief structures. IEEE Trans on Systems, Vol. 26(1996): pp.708-717.

DOI: 10.1109/3468.541331

Google Scholar

[7] Weiru Liu, Alan Budy: The Combination of Different Pieces of Evidence Using Incidence Calculus, Vene: Dept. of Artificial Intelligence, Univ. of Edinburgh. (1992). pp.1-40.

Google Scholar

[8] Florea M C, Jousselme A L, Bosse E: Robust combination rules for evidence theory. Information Fusion, Vol. 10 (2009) : pp.183-197.

DOI: 10.1016/j.inffus.2008.08.007

Google Scholar

[9] Frans Voorbraak: Combining unreliable pieces of evidence. Information on http: /www. wins. uva. nl/research/illc/Publications/Lists/. /ResearchReports/CT-1995-7. text. ps. gz.

Google Scholar

[10] Jousselme A L, Grenier D, Boss E: A new distance between two bodies of evidence. Information Fusion, Vol. 2 (2001) : pp.90-101.

DOI: 10.1016/s1566-2535(01)00026-4

Google Scholar

[11] logor O. Kozine, Lev V. Utkin : An approach to combining unreliable pieces of evidence and their propagation in a system response analysis. Reliability Engineering & system safety. Vol. 85(2004): pp.103-112.

DOI: 10.1016/j.ress.2004.03.006

Google Scholar

[12] Alessandro Saffiotti: Issues of Knowledge Representation in Dempster-Shafer's Theory. Advances in the Dempster-Shafer theory of evidence. (1994): pp.415-440.

Google Scholar

[13] Murphy C K: Combining belief functions when evidence conflicts. Decision Support Systems, Vol. 29 (2000) : pp.1-9.

DOI: 10.1016/s0167-9236(99)00084-6

Google Scholar

[14] Alessandro Saffiotti.: Using Dempster-Shafer theory in knowledge representation. arXiv preprint arXiv. (2013). pp.1304-1123.

Google Scholar

[15] XU Ling-yu, ZHANG Bo-feng: Evidence Ullage Analysis in D-S Theory and Development. Journal of Software. Vol. 15(2004): pp.69-75.

Google Scholar

[16] Jeffrey A. Barnett: Computational methods for a mathematical theory of evidence. Classic Works of the Dempster-Shafer Theory of Belief Functions. (2008): pp.197-216.

DOI: 10.1007/978-3-540-44792-4_8

Google Scholar

[17] Le Hegarat-Mascle, D. Richard: Multi-scale data fusion using Dempster-Shafer evidence theory. Integrated Computer-Aided Engineering. Vol. 10(2003): pp.9-22.

DOI: 10.3233/ica-2003-10103

Google Scholar