Arithmetic Research on Data Mining Technology and Associative Rules Mining

Article Preview

Abstract:

Data mining is a technique that aims to analyze and understand large source data reveal knowledge hidden in the data. It has been viewed as an important evolution in information processing. Why there have been more attentions to it from researchers or businessmen is due to the wide availability of huge amounts of data and imminent needs for turning such data into valuable information. During the past decade or over, the concepts and techniques on data mining have been presented, and some of them have been discussed in higher levels for the last few years. Data mining involves an integration of techniques from database, artificial intelligence, machine learning, statistics, knowledge engineering, object-oriented method, information retrieval, high-performance computing and visualization. Essentially, data mining is high-level analysis technology and it has a strong purpose for business profiting. Unlike OLTP applications, data mining should provide in-depth data analysis and the supports for business decisions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3949-3951

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Han J et al. Data mining:Concepts and techniques. Morgan Kaufmann Publishers. (2001).

Google Scholar

[2] Agrawal R et al. A. Mining association rules between sets of items in large databases. In Proc. ACM SIGMOD Conf. on Management of Data. 1993: 207~216.

DOI: 10.1145/170036.170072

Google Scholar

[3] Agosta L. The essential guide to data warehousing. Prentice-Hall Inc. (2000).

Google Scholar

[4] Chen M et al. Data mining: An overview from a database perspective. IEEE Trans on Knowledge and Data Engineering. 1996, Vol. 8: 866~883.

DOI: 10.1109/69.553155

Google Scholar

[5] Fayyad U et al. Knowledge discovery and data mining towards a unifying framework. In KDD'96 Proc. 2nd Int. Conf. on Knowledge Discovery & Data Mining. AAAI Press, (1996).

DOI: 10.1023/b:dami.0000015956.46291.f2

Google Scholar