Both Theoretical and Experimental Analysis of Temporal and Spatial Chirp of Femtosecond Pulse Beam in a Prism Pair

Article Preview

Abstract:

Spatial and temporal chirp will effects a pulse both in space and in time domains. So effectively controlling and utilizing the spatial and temporal chirp has great significance. In this manuscript, firstly the dispersion properties of the prism pair is theoretical analyzed, and the phase delay second derivative expression of the thin prism is obtained. Then a setup is demonstrated to experimentally investigate the spatial and temporal properties of the femtosecond pulse beam. The spatial chirp and temporal chirp effects on the femtosecond pulse beam are experimentally obtained. Both theoretical analysis and experimental results indicate that the group delay dispersion due to prisms is always negative, and the pulse beam can be compressed or broadened by the prism pair based on changing the prisms referring parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4514-4517

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. J. Duarte. Generalized multiple-prism dispersion theory for laser pulse compression: higher order phase derivatives [J], Appl. Phys. B, 2009 96(4): 809-814.

DOI: 10.1007/s00340-009-3475-2

Google Scholar

[2] S. Akturk, X. Gu, M. Kimmel, R. Trebino. Extremely simple single-prism ultrashort-pulse compressor [J], Opt. Express, 2006 14(21): 10101-10108.

DOI: 10.1364/oe.14.010101

Google Scholar

[3] X. Gu, S. Akturk, R. Trebino. Spatial chirp in ultrafast optics [J], Opt. Commun., 2004 242: 599–604.

DOI: 10.1016/j.optcom.2004.09.004

Google Scholar

[4] R. L. Fork, O. E. Martinez, J. P. Gordon. Negative dispersion using pair of prisms [J], Opt. Lett., 1984 9(5): 150-152.

Google Scholar

[5] O. E. Martinez, J. P. Gordon, R. L. Fork. Negative group-velocity dispersion using refraction [J], J. Opt. Soc. Am. A, 1984 1(10): 1003–1006.

DOI: 10.1364/josaa.1.001003

Google Scholar

[6] W. Dietel, J. J. Fontaine, J. C. Diels. Intracavity pulse compression with glass: a new method of generating pulses shorter than 60 fs [J], Opt. Lett., 1983 8: 4-6.

DOI: 10.1364/ol.8.000004

Google Scholar

[7] J. C. Diels, W. Dietel, J. J. Fontaine, W. Rudolph, B. Wilhelmi. Analysis of a mode-locked ring laser: chirped-solitary-pulse solutions [J], J. Opt. Soc. Am. B, 1985, 2: 680-686.

DOI: 10.1364/josab.2.000680

Google Scholar

[8] L. Y. Pang, J. G. Fujimoto, E. S. Kintzer. Ultrashort-pulse generation from high-power diode arrays by using intracavity optical nonlinearities [J], Opt. Lett., 1992 17: 1599-1601.

DOI: 10.1364/ol.17.001599

Google Scholar

[9] A.M. Weiner. Femtosecond pulse shaping using spatial light modulators [J], Rev. Sci. Instrum., 2000 71: 1929–(1960).

DOI: 10.1063/1.1150614

Google Scholar

[10] J.C. Vaughan, T. Feurer, K.A. Nelson. Automated two-dimensional femtosecond pulse shaping [J], J. Opt. Soc. Am. B, 2002 19: 2489-2495.

DOI: 10.1364/josab.19.002489

Google Scholar