An Effective Spectrum Sensing Method Based on Maximum Eigenvector

Article Preview

Abstract:

Spectrum sensing is a fundamental problem for cognitive radio system as it allows secondary user (SU) to find spectrum holes for opportunistic reuse. This paper presents a new spectrum sensing method based on the data stacking technique (temporal smoothing technique) and power method. The “maximum eigenvector” is used to detect the spectrum holes. Compared with the previous works, the proposed approach can provide better performance, such as higher detection probability in the lower signal-to-noise-ratio (SNR) scenario, etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4522-4525

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Mitola, and G. Q. Maguire, Cognitive radios: Making software radios more personal, IEEE Personal Communications, Vol. 6, No. 4, pp.13-18, (1999).

DOI: 10.1109/98.788210

Google Scholar

[2] S. Haykin, Cognitive radio: Brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, pp.201-220, (2005).

DOI: 10.1109/jsac.2004.839380

Google Scholar

[3] F.L. Liu, J.K. Wang, etc., A second-orded cone programming approach for robust downlink beamforming with power control in cognitive radio networks, Progress in Electromagnetics Research M, Vol. 18, pp.221-231, (2011).

DOI: 10.2528/pierm11051103

Google Scholar

[4] Y.H. Zeng, Y.C. Liang, and R. Zhang, Blindly combined energy detection for spectrum sensing in cognitive radio, IEEE Signal Processing Letter, vol. 15, pp.649-652, (2008).

DOI: 10.1109/lsp.2008.2002711

Google Scholar

[5] S. Kapoor, S. Rao, and G. Singh, Opportunistic spectrum sensing by employing matched filter in cognitive radio network, International conference on communication systems and network technologies, pp.580-583, (2011).

DOI: 10.1109/csnt.2011.124

Google Scholar

[6] J. Lunden, S.A. Kassam, V. Koivunen, Robust nonparametric cyclic correlation-based spectrum sensing for cognitive radio, IEEE Transactions on Signal Processing, vol. 58, no. 1, pp.38-52, (2010).

DOI: 10.1109/tsp.2009.2029790

Google Scholar

[7] K.L. Du, W.H. Mow, Affordable cyclostationarity-based spectrum sensing for cognitive radio with smart antennas, IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp.1877-1886, (2010).

DOI: 10.1109/tvt.2010.2043860

Google Scholar

[8] Y.H. Zeng, Y.C. Liang, Maximum-minmum eigenvalue detection for cognitive radio, the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, (2007).

DOI: 10.1109/pimrc.2007.4394211

Google Scholar

[9] Y.H. Zeng, Y.C. Liang, Eigenvalue-based spectrum sensing algorithms for cognitive radio, IEEE Transactions on Communications, vol. 57, no. 6, pp.1784-1793, (2009).

DOI: 10.1109/tcomm.2009.06.070402

Google Scholar

[10] Y.H. Zeng, Y.C. Liang, Spectrum-sensing algorithms for cognitive radio based on statitical covariances, IEEE Transactions on Vechicular Technolgogy, vol. 58, no. 4, pp.1804-1815, (2009).

DOI: 10.1109/tvt.2008.2005267

Google Scholar

[11] P. De, Y. C Liang, Blind spectrum sensing algorithms for cognitive radio networks, IEEE Transctions on Vehicular Technology, vol. 57, no. 5, pp.2834-2842, (2008).

DOI: 10.1109/tvt.2008.915520

Google Scholar

[12] F.L. Liu, J.K. Wang, R.Y. Du, Unitary-JAFE algorithm for joint angle-frequency estimaiton based on Frame-Newton method, Signal Processing, vol. 3, no. 90, pp.809-820, (2010).

DOI: 10.1016/j.sigpro.2009.08.013

Google Scholar

[13] F.L. Liu, S.M. Guo, Y.X. Sun. Primary user signal detection based on virtual multiple antennas for cognitive radio networks, Progress In Electromagnetics Research C, Vol. 42, 213-227, (2013).

DOI: 10.2528/pierc13061801

Google Scholar