Mechanism of the Saturation of the Radiation Induced Interface Trap Buildup

Article Preview

Abstract:

Ionizing radiation impact leads to degradation of electrical parameters of microelectronic devices. It is necessary to take this fact to account when dealing with microcircuits for space applications and high energy physics. Main physical reason of radiation-induced failures of spaceship and front end electronic equipment is buidup of interface traps at Si-SiO2 interface in semiconductor transistor structures. The original mechanism of interface trap annealing based on radiation induced charge neutralization (RICN) effect is presented. It is supposed that the positive charge of trapped holes in oxide is transformed through electron capture into a new defect (the AD center). The AD centers act as interface traps. The appearance of the AD+ state leads to the annihilation of the AD center or annealing of interface trap. The annihilation process can be stimulated by radiation induced or substrate electrons. The competitive between accumulation and annihilation processes leads to saturation of the interface trap buildup. The value of density of interface trap in saturation depends on product of interface trap accumulation rate (Kacc)it and constant KAD which is function of thermal velocity, capture cross-section of AD center, generation rate and electron yield of radiation induced electrons. The extraction of these parameters allows explaining a known experimental data. The alternative mechanism of the interface trap saturation connected with the exhaustion of initial interface trap precursors is considered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-146

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.S. Winokur, H.E. Boesch, Interface state generation in radiation-hard oxides. IEEE transactions on Nuclear Science, vol. 27, № 6, pp.1647-1650, (1980).

DOI: 10.1109/tns.1980.4331083

Google Scholar

[2] F.B. McLean, A framework for understanding radiation-induced interface state in SiO2 MOS structures. IEEE transactions on Nuclear Science, vol. 27, № 6, pp.1651-1657, (1980).

DOI: 10.1109/tns.1980.4331084

Google Scholar

[3] J. M. Benedetto, H.E. Boesch, F.B. Mclean, Dose and energy dependence of interface trap formation in Cobalt-60 and X-ray environments. IEEE transactions on Nuclear Science, vol. 35, № 6, pp.1260-1264, (1988).

DOI: 10.1109/23.25449

Google Scholar

[4] M.P. Baze, R.E. Plaag, A.H. Johnston, Dose dependence of interface traps in gate oxides at high levels of total dose. IEEE transactions on Nuclear Science, vol. 36, № 6, pp.1858-1864, (1989).

DOI: 10.1109/23.45379

Google Scholar

[5] M. Ullán, J. Rice, G. Brooijmans, et al, Evaluation of Silicon-Germanium (SiGe) Bipolar Technologies for Use in an Upgraded ATLAS Detector. Nuclear Instruments and Methods in Physics Research, A, vol. 604, pp.668-674, (2009).

DOI: 10.1016/j.nima.2009.03.177

Google Scholar

[6] S. Díez, M. Lozano, G. Pellegrini, I. Mandić, D. Knoll, B. Heinemann, M. Ullán, IHP SiGe: C BiCMOS technologies as a suitable backup solution for the ATLAS Upgrade Front-End electronics. IEEE Trans. on Nuclear Science, vol. 56, pp.2449-2456, (2009).

DOI: 10.1109/tns.2009.2021835

Google Scholar

[7] M. Ullan, M. Wilder, H. Spieler , E. Spencer, S. Rescia, F.M. Newcomer, F. Martinez-McKinney, W. Kononenko, A.A. Glillo, S. Diez, Enhanced Low Dose Rate Sensitivity (ELDRS) tests on advanced SiGe bipolar transistors for very high total dose applications. IEEE Trans. on Nuclear Science, vol. 56, pp.2449-2456, (2009).

DOI: 10.1016/j.nima.2013.04.088

Google Scholar

[8] J. Boch, F. Saigne, S. Ducret, R.D. Schrimpf, D. M. Fleetwood, P. Iacconi, L. Dusseau, Total dose effects on bipolar integrated circuits: characterization of the saturation region. IEEE transactions on Nuclear Science, vol. 51, № 6, pp.3225-3230, (2004).

DOI: 10.1109/tns.2004.839143

Google Scholar

[9] J. Boch, Y.G. Velo, F. Sainge, N. Roche, R.D. Schrimpf, J. Vaille, L. Dusseau, C. Chatry, E. Lorfevre, R. Ecoffet, A.D. Touboul, The use of dose rate switching technique to characterize bipolar devices. IEEE transactions on Nuclear Science, vol. 53, №6, pp.3347-3353, (2009).

DOI: 10.1109/tns.2009.2033686

Google Scholar

[10] H.J. Barnaby, R.D. Schrimpf, R.L. Pease, P. Cole, T. Turflinger, J. Kreig, J. Titus, D. Emily, M. Gehlhausen, S.C. Witczak, M.C. Maher, D. Van Nort, Identification of degradation mechanisms in bipolar linear voltage comparator through correlation of transistor and circuit response. IEEE transactions on Nuclear Science, vol. 46, №6, pp.1666-1673, (1999).

DOI: 10.1109/23.819136

Google Scholar

[11] T. R. Oldham, F.B. McLean, Total ionizing dose effects in MOS oxides and devices. IEEE transactions on Nuclear Science, vol. 50, №3, pp.483-499, (2003).

DOI: 10.1109/tns.2003.812927

Google Scholar

[12] S.K. Lai, Interface trap generation in silicon dioxide when electrons are captured by trapped holes. Journal of Applied Physics vol. 54, Issue 5, pp.2540-2546, (1983).

DOI: 10.1063/1.332323

Google Scholar

[13] V.S. Pershenkov, S.V. Cherepko, A.V. Sogoyan, V.V. Belyakov, V.N. Ulimov, V.V. Abramov, A.V. Shalnov, V.I. Rusanovsky, Proposed two-level acceptor-donor (AD) center and nature of switching traps in irradiated MOS structures. IEEE transactions on Nuclear Science, vol. 43, №6, pp.2579-2586, (1996).

DOI: 10.1109/23.556839

Google Scholar

[14] K.L. Yip, W.B. Fowler, Electronic structure of E ׳ centers in SiO2, Phys. Rev. B, vol. 11(6), pp.2427-2438, (1975).

Google Scholar

[15] E.P. Reilly, J. Roberston, Theory of defect's in vitrous silicon dioxide. Phys. Rev. B, vol. 27(6), pp.3780-3788, (1981).

Google Scholar

[16] S.M. Sze, Physics of semiconductor devices. New York, Willey, (1981).

Google Scholar

[17] S.C. Witczak, R.D. Schrimpf, K.F. Galloway, D. M. Fleetwood, R.L. Pease, J.M. Puhl, D.M. Schmidt, W.E. Combs, J.S. Suehle, Accelerated tests for simulating low dose rate gain degradation of lateral and substrate pnp bipolar junction transistors. IEEE transactions on Nuclear Science, vol. 43, №6, pp.3151-3160, (1996).

DOI: 10.1109/23.556919

Google Scholar

[18] G.I. Zebrev et al, Radiation response of bipolar transistors at various irradiation temperature and electric biases: modeling and experiment. IEEE transactions on Nuclear Science, vol. 53, №6, pp.1981-1987, (2006).

DOI: 10.1109/tns.2006.877851

Google Scholar