Response of Sandwich Panels with Tubular Cores to Blast Load

Article Preview

Abstract:

This paper reports on the response of cladding sandwich panels with tubular cores to uniform blast load. The panels consist of thin-walled circular tubes (38 mm in diameter) made from aluminium 6063-T6 riveted laterally between the skin plates at varying spacing arrangements to provide four different types of panels. The skin exposed to the blast load is made from DOMEX 700 Steel while the back face skin is made from mild steel. Varying charge masses of explosive (ranging from 5 g to 40 g) with a prescribed load diameter of 40mm is detonated at a stand-off distance of 200 mm to provide a “uniform” blast load to the sandwich panels. Energy is dissipated mostly through the plastic deformation of the tubular cores. The results show an increase in average deflection with an increase in charge mass/impulse for the different types of panels. The cladding panels with the least interaction between the tubular cores are observed to have the highest energy absorption capabilities for a given charge mass.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

581-585

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Zhu and G. Lu; A Review of Blast and Impact of Metallic and Sandwich Structures, EJSE Special Issue: Loading on Structures, (2007), pp.92-101.

DOI: 10.56748/ejse.681

Google Scholar

[2] S. Chung Kim Yuen, G.N. Nurick, M.D. Theobald, and G.S. Langdon; Chapter 10, Sandwich panels subjected to blast loading, Dynamic Failure of Materials and Structures, Springer, USA, ISBN: 197814419 04454, (2009), pp.297-325.

DOI: 10.1007/978-1-4419-0446-1_10

Google Scholar

[3] Z. Xue and J.W. Hutchinson; A comparative study of impulse-resistant metal sandwich plates, Int J Impact Eng, Vol. 30(10), (2004), pp.1283-1305.

DOI: 10.1016/j.ijimpeng.2003.08.007

Google Scholar

[4] S. Chung Kim Yuen and G.N. Nurick; Chapter 8, The use of tubular structures as cores for sandwich panels subjected to dynamic and blast loading - a current state of the art, Blast Mitigation: Experimental and Numerical Studies, Springer, New York, USA, ISBN: 1978-1-4614-7266-7, (2013).

DOI: 10.1007/978-1-4614-7267-4_8

Google Scholar

[5] S. Palanivelu, W. Van Paepegem, J. Degrieck, S. De Pauw, J. Vantomme, J. Wastiels, D. Kakogiannis, and D. Van Hemelrijck; Low velocity axial impact crushing performance of empty recyclable metal beverage cans, Int J Impact Eng, doi: 10. 1016/j. ijimpeng. 2011. 02. 008, Vol. 38(7), (2011).

DOI: 10.1016/j.ijimpeng.2011.02.008

Google Scholar

[6] S. Palanivelu, W. Van Paepegem, J. Degrieck, B. Reymen, J.M. Ndambi, J. Vantomme, D. Kakogiannis, J. Wastiels, and D. Van Hemelrijck; Close-range blast loading on empty recyclable metal beverage cans for use in sacrificial cladding structure, Engineering Structures, doi: 10. 1016/j. engstruct. 2011. 02. 034, Vol. 33(6), (2011).

DOI: 10.1016/j.engstruct.2011.02.034

Google Scholar

[7] M.D. Theobald and G.N. Nurick; Numerical investigation of the response of sandwich-type panels using thin-walled tubes subject to blast loads, Int J Impact Eng, doi: 10. 1016/j. ijimpeng. 2006. 04. 003, Vol. 34(1), (2007), pp.134-156.

DOI: 10.1016/j.ijimpeng.2006.04.003

Google Scholar

[8] M.D. Theobald and G.N. Nurick; Experimental and numerical analysis of tube-core claddings under blast loads, Int J Impact Eng, doi: 10. 1016/j. ijimpeng. 2009. 10. 003, Vol. 37(3), (2010), pp.333-348.

DOI: 10.1016/j.ijimpeng.2009.10.003

Google Scholar

[9] S.R. Reid and T.Y. Reddy; Effect of strain hardening on the lateral compression of tubes between rigid plates, Int J Solids and Struc, doi: 10. 1016/0020-7683(78)90026-4, Vol. 14(3), (1978), pp.213-225.

DOI: 10.1016/0020-7683(78)90026-4

Google Scholar

[10] T.Y. Reddy and S.R. Reid; Lateral compression of tubes and tube-systems with side constraints, Int J Mech Sci, doi: 10. 1016/0020-7403(79)90023-7, Vol. 21(3), (1979), pp.187-199.

DOI: 10.1016/0020-7403(79)90023-7

Google Scholar

[11] T.Y. Reddy and S.R. Reid; Phenomena associated with the crushing of metal tubes between rigid plates, Int J Solids and Struc, doi: 10. 1016/0020-7683(80)90005-0, Vol. 16(6), (1980), pp.545-562.

DOI: 10.1016/0020-7683(80)90005-0

Google Scholar

[12] V.P.W. Shim and W.J. Stronge; Lateral crushing of thin-walled tubes between cylindrical indenters, Int J Mech Sci, doi: 10. 1016/0020-7403(86)90013-5, Vol. 28(10), (1986), pp.683-707.

DOI: 10.1016/0020-7403(86)90013-5

Google Scholar

[13] N.K. Gupta and A. Khullar; Collapse load analysis of square and rectangular tubes subjected to transverse in-plane loading, Thin-Walled Structures, doi: 10. 1016/0263-8231(95)93619-W, Vol. 21(4), (1995), pp.345-358.

DOI: 10.1016/0263-8231(95)93619-w

Google Scholar

[14] Gupta N.K. and R. Velmurugan; An analysis of axial crushing of composite tubes, J Comp Matl, Vol. 31(13), (1997), pp.1262-1286.

DOI: 10.1177/002199839703101301

Google Scholar

[15] N.K. Gupta, G.S. Sekhon, and P.K. Gupta; A study of lateral collapse of square and rectangular metallic tubes, Thin-Walled Structures, doi: 10. 1016/S0263-8231(01)00033-7, Vol. 39(9), (2001), pp.745-772.

DOI: 10.1016/s0263-8231(01)00033-7

Google Scholar

[16] N.K. Gupta, G.S. Sekhon, and P.K. Gupta; Study of lateral compression of round metallic tubes, Thin-Walled Structures, doi: 10. 1016/j. tws. 2004. 12. 002, Vol. 43(6), (2005), pp.895-922.

DOI: 10.1016/j.tws.2004.12.002

Google Scholar

[17] W. Chen and H. Hao; Numerical study of a new multi-arch double-layered blast-resistance door panel, Int J Impact Eng, Vol. 43(0), (2012), pp.16-28.

DOI: 10.1016/j.ijimpeng.2011.11.010

Google Scholar