Response of Filled Thin-Walled Square Tubes to Axial Impact Load

Article Preview

Abstract:

This paper presents the results of an investigation into the response of thin-walled square (60x60 mm and 76x76 mm) tubes made from mild steel filled with four different fillers; aluminium foam (Cymat 7%), two types of aluminium honeycomb and polyurethane foam to quasi-static and dynamic axial impact load. The energy absorption characteristics of the foam-filled tubes are compared to that of a hollow tube, through efficiency calculations. The tubular structures are subjected to axial impact load generated by drop masses of 320 kg and 390 kg released from a height ranging between 2.1 m to 4.1 m. Footage from a high speed camera is used to determine the average crush forces exerted by each specimen. The results show that the fillers have insignificant effects on the initial peak forces based on the quasi-static results but increase the overall mean crushed force. The findings also indicate that the fillers affect at times the size of the lobe formed thus compromising the energy absorption capacity of the tube.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

586-592

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Chung Kim Yuen and G.N. Nurick; The energy absorbing characteristics of tubular structures with geometric and material modifications: an overview, Applied Mechanics Reviews, doi: 10. 1115/1. 2885138, Vol. 61(2), (2008), pp.020802-15.

DOI: 10.1115/1.2885138

Google Scholar

[2] T.Y. Reddy and R.J. Wall; Axial compression of foam-filled thin-walled circular tubes, Int J Impact Eng, Vol. 7(2), (1988), pp.151-166.

DOI: 10.1016/0734-743x(88)90023-1

Google Scholar

[3] A.K. Toksoy and M. Güden; The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes, Thin-Walled Structures, Vol. 43(3), (2005), pp.333-350.

DOI: 10.1016/j.tws.2004.07.007

Google Scholar

[4] Kunze H.D., Baumeister J., Banhart J., and Weber M.; P/M technology for the production of metal foams, Powder Metallurgy International, Vol. 25(4), (1993), pp.182-185.

Google Scholar

[5] Santosa S. and Wierzbicki T.; Effect of an ultralight metal filler on the bending collapse behaviour of thin-walled prismatic columns, Int J Mech Sci, Vol. 41(8), (1997), pp.995-1019.

DOI: 10.1016/s0020-7403(98)00066-6

Google Scholar

[6] A.G. Hanssen, M. Langseth, and O.S. Hopperstad; Static crushing of square aluminium extrusions with aluminium foam filler, Int J Mech Sci, Vol. 41(8), (1999), pp.967-993.

DOI: 10.1016/s0020-7403(98)00064-2

Google Scholar

[7] A.G. Hanssen, M. Langseth, and O.S. Hopperstad; Static and dynamic crushing of square aluminium extrusions with aluminium foam filler, Int J Impact Eng, Vol. 24(4), (2000), pp.347-383.

DOI: 10.1016/s0734-743x(99)00169-4

Google Scholar

[8] A.G. Hanssen, M. Langseth, and Hopperstad O. S; Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler, Int J Impact Eng, Vol. 24(5), (2000), pp.475-507.

DOI: 10.1016/s0734-743x(99)00170-0

Google Scholar

[9] A.G. Hanssen, M. Langseth, and O.S. Hopperstad; Optimum design for energy absorption of square aluminium columns with aluminium foam filler, Int J Mech Sci, Vol. 43(1), (2001), pp.153-176.

DOI: 10.1016/s0020-7403(99)00108-3

Google Scholar

[10] M. Langseth, O.S. Hopperstad, and A.G. Hanssen; Crash behaviour of thin-walled aluminium members, Thin-Walled Structures, Vol. 32(1/3), (1998), pp.127-150.

DOI: 10.1016/s0263-8231(98)00030-5

Google Scholar

[11] S.P. Santosa, T. Wierzbicki, A.G. Hanssen, and M. Langseth; Experimental and numerical studies of foam-filled sections, Int J Impact Eng, Vol. 24(5), (2000), pp.509-534.

DOI: 10.1016/s0734-743x(99)00036-6

Google Scholar

[12] M. Seitzberger, R.F. Rammerstorfer, H.P. Degischer, and R. Gradinger; Crushing of axially compressed steel tubes filled with aluminium foam, Acta Mechanica, Vol. 125, (1997), pp.93-105.

DOI: 10.1007/bf01177301

Google Scholar

[13] S. Santosa and T. Wierzbicki; Crush behaviour of box columns filled with aluminium honeycomb or foam, Computers and Structures, Vol. 68(4), (1998), pp.343-367.

DOI: 10.1016/s0045-7949(98)00067-4

Google Scholar

[14] T.Y. Reddy and S.T.S. Al-Hassani; Axial crushing of wood-filled square metal tubes, Int J Mech Sci, Vol. 35(3/4), (1993), pp.231-246.

DOI: 10.1016/0020-7403(93)90078-9

Google Scholar

[15] W. Abramowicz and N. Jones; Dynamic axial crushing of square tubes, Int J Impact Eng, Vol. 2(2), (1984), pp.179-208.

DOI: 10.1016/0734-743x(84)90005-8

Google Scholar

[16] W. Abramowicz and N. Jones; Static and dynamic axial crushing of circular and square tubes, Metal Forming and Impact Mechanics, Pergamon Press, Oxford, (1985), pp.225-247.

DOI: 10.1016/b978-0-08-031679-6.50021-7

Google Scholar

[17] N. Jones; Structural Impact, Cambridge University Press, UK, ISBN: 9781107010963, 2, (2011), pp.1-604.

Google Scholar

[18] S.B. Bodlani, S. Chung Kim Yuen, and G.N. Nurick; The Energy Absorption Characteristics of Square Mild Steel Tubes With Multiple Induced Circular Hole Discontinuities--Part I: Experiments, J Appl Mech, ASME, Vol. 76(4), (2009), pp.041012-11.

DOI: 10.1115/1.3114967

Google Scholar

[19] N. Jones; Energy-absorbing effectiveness factor, Int J Impact Eng, Vol. 37(6), (2010), pp.754-765.

Google Scholar