[1]
S. J. S. Wansom, Pozzolanic Activity of Industrial Sugar Cane, vol. 17, no. 4, p.349–357, (2010).
Google Scholar
[2]
E. M. R. Fairbairn, B. B. Americano, G. C. Cordeiro, T. P. Paula, R. D. Toledo Filho, and M. M. Silvoso, Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits., Journal of environmental management, vol. 91, no. 9, p.1864–71, Sep. (2010).
DOI: 10.1016/j.jenvman.2010.04.008
Google Scholar
[3]
M. Frías, E. Villar, and H. Savastano, Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture, Cement and Concrete Composites, vol. 33, no. 4, p.490–496, Apr. (2011).
DOI: 10.1016/j.cemconcomp.2011.02.003
Google Scholar
[4]
N. Chusilp, C. Jaturapitakkul, and K. Kiattikomol, Utilization of bagasse ash as a pozzolanic material in concrete, Construction and Building Materials, vol. 23, no. 12, p.3523–3531, Dec. (2009).
DOI: 10.1016/j.conbuildmat.2009.06.030
Google Scholar
[5]
K. Ganesan, K. Rajagopal, and K. Thangavel, Evaluation of bagasse ash as supplementary cementitious material, Cement and Concrete Composites, vol. 29, no. 6, p.515–524, Jul. (2007).
DOI: 10.1016/j.cemconcomp.2007.03.001
Google Scholar
[6]
S. Suvimol and C. Daungruedee, Bagasse Ash : Effect Of Pozzolanic Activity And Application In Cement Use Aspect, 3rd ACF International Conference-ACF/VCA, p.165–173, (2008).
Google Scholar
[7]
R. and K. S. Srinivasan, Experimental Study on Bagasse Ash in Concrete, International Journal for Service Learning in Engineering, vol. 5, no. 2, p.60–66, (2010).
Google Scholar
[8]
N. Amin, Use of Bagasse Ash in Concrete and Its Impact on the Strength and Chloride Resistivity, no. May, p.717–720, (2011).
DOI: 10.1061/(asce)mt.1943-5533.0000227
Google Scholar
[9]
BS 12-Specifications for Portland Cement, British Standards Institute, London, (1996).
Google Scholar
[10]
522: Part 4 Specification for Portland Cement (Ordinary and Rapid hardening), Malaysian Standards, (1989).
Google Scholar
[11]
ASTM, C 618-Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete, Annual Book of ASTM Standards, (2009).
DOI: 10.1520/c0618-00
Google Scholar
[12]
BS 1881-125 Testing Concrete: Methods of Mixing and Sampling Fresh Concrete in the Laboratory, British Standards Institute, London, (1986).
Google Scholar
[13]
BS 1881: Part 111 Method for Determination of Compressive Strength of Concrete, British Standards Institute, London, (1983).
Google Scholar
[14]
F. He, C. Shi, Q. Yuan, C. Chen, and K. Zheng, AgNO3-based colorimetric methods for measurement of chloride penetration in concrete, Construction and Building Materials, vol. 26, no. 1, p.1–8, Jan. (2012).
DOI: 10.1016/j.conbuildmat.2011.06.003
Google Scholar
[15]
E. Güneyisi, T. Özturan, and M. Gesogˇlu, Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements, Building and Environment, vol. 42, no. 7, p.2676–2685, Jul. (2007).
DOI: 10.1016/j.buildenv.2006.07.008
Google Scholar
[16]
G. C. Cordeiro, R. D. T. Filho, and E. M. R. Fairbairn, Ultrafine sugar cane bagasse ash : high potential pozzolanic material for tropical countries Cinza ultrafina do bagaço de cana-de-açúcar : material, Ibracon Structures and materials journal, vol. 3, no. 1, p.50–58, (2010).
DOI: 10.1590/s1983-41952010000100004
Google Scholar
[17]
S. Rukzon and P. Chindaprasirt, Utilization of bagasse ash in high-strength concrete, Materials & Design, vol. 34, p.45–50, Feb. (2012).
DOI: 10.1016/j.matdes.2011.07.045
Google Scholar