[1]
D. Hardjito, and B. V. Rangan, Development and properties of low-calcium fly ash-based geopolymer concrete, Research Report GC-1, Faculty of Engineering, Curtin University of Technology, Perth, Australia, (2005).
Google Scholar
[2]
V. M. Malhotra, Introduction: Sustainable development and concrete technology, ACI Concrete International, vol. 24, no. 7, p.22, (2002).
Google Scholar
[3]
T. R. Naik, Sustainability of cement and concrete industries, in International Conference on Global Construction: Ultimate Concrete Opportunities, Dundee, Scotland, July 2005, pp.141-150.
DOI: 10.1680/asic.34044.0017
Google Scholar
[4]
B. V. Rangan, Fly ash-based geopolymer concrete, Research Report GC-4, Faculty of Engineering, Curtin University of Technology, Perth, Australia, (2008).
Google Scholar
[5]
S. Mindess, F. J. Young, and D. Darwin, Concrete, 2nd ed., Upper Saddle River: Prentice Hall, New Jersey, (2003).
Google Scholar
[6]
S. E. Wallah, and B. V. Rangan, Low-calcium fly ash-based geopolymer concrete: Long-term properties, Research Report GC-2, Faculty of Engineering, Curtin University of Technology, Perth, Australia, (2006).
Google Scholar
[7]
A. Palomo, A. Fernandez-Jimenez, C. L. Hombrados, J. L. Lleyda, Precast elements made of Alkali-activated fly ash concrete, in Eighth CANMET/ ACI International Conference on Fly ash, Silica Fume, Slag adn Natural Pozzolans in concrete, Los Vegas, USA, (2004).
DOI: 10.14359/13260
Google Scholar
[8]
M. Olivia and H. Nikraz, Properties of fly ash geopolymer concrete designed by Taguchi method, Materials and Design, vol. 36, pp.191-198, (2012).
DOI: 10.1016/j.matdes.2011.10.036
Google Scholar
[9]
S. D. Wang, X. C. Pu, K. L. Scrivener, P. L. Pratt, Alkali-activated slag cement and concrete: a review of properties and problems, Advance Cement Research, vol. 7, no. 27, p.93– 102, (1995).
DOI: 10.1680/adcr.1995.7.27.93
Google Scholar
[10]
ASTM C 618-05, Standard Specification for Coal Fly ash and Raw or Calcined Natural Pozzolan for use as Mineral Admixture in Portland Cement Concrete, American Society for Testing and Materials, Annual Book of ASTM Standards, vol. 04, no. 02, (2005).
DOI: 10.1520/c0618-15
Google Scholar
[11]
BS EN 450-1: 2005, Fly ash for concrete - Part 1: Definition, specifications and conformity criteria, British-Adopted European Standard, (2005).
Google Scholar
[12]
BS EN 13263-1: 2005+A1: 2009, Silica fume for concrete – Part 1: Definitions, requirements and conformity criteria, British-Adopted European Standard, (2009).
Google Scholar
[13]
Memon, F.A., Nuruddin, M.F., and Shafiq, N., Effect of Silica fume on Fresh and Hardened properties of Fly ash-based Self-Compacting Geopolymer Concrete, International Journal of Minerals, Metallurgy and Materials, Vol. 20, No. 2, 2013, pp.205-213.
DOI: 10.1007/s12613-013-0714-7
Google Scholar
[14]
BS EN 197-1: 2000, Cement – Part 1: Composition, specifications and conformity criteria for common cements, British-Adopted European Standard, (2000).
Google Scholar
[15]
ASTM C 157-08, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete, Annual Book of ASTM Standards, 04. 02 Concrete and Concrete Aggregates, American Society for Testing and Material, (2008).
DOI: 10.1520/c0157_c0157m-03
Google Scholar
[16]
K. Sagoe-Crentsil , T. Brown and A. Taylor, Drying shrinkage and creep performance of geopolymer concrete, Journal of Sustainable Cement-Based Materials, vol. 2, no. 1, pp.35-42, (2013).
DOI: 10.1080/21650373.2013.764963
Google Scholar