Comparison of Soil Water Retention Functions for Humid Tropical Soils

Article Preview

Abstract:

The determination of soil hydraulic properties is of paramount importance as they are needed in many models of water and solute transport in soils, however conventional methods are quite difficult, expensive and sometimes cumbersome to use. Most studies of soil water retention functions are for temperate soils and their soil water retention curve (SWRC) cannot be extrapolated to tropical region, as such this study focused solemnly on SWRC of soils of tropical region (Malaysia and Indonesia to be specific). The analytical models of Brooks & Corey, van Genuchten and Kosugi were applied to model the SWRC for humid tropical soils, parameters of the three models were optimised by fitting them to 191 soil samples, of 10 different classes (International society of soil science classification) using VBA & MS excel solver add in. A comparison of the fitting capabilities and model quality was made using the sum of square of errors (SSQE) between observed and modelled values and, Akaike information criterion (AIC) respectively. The Kosugi model was found to describe the SWRC of the tropical soil samples better than the other models, as it has the lowest SSQE and AIC values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Mermoud and D. Xu, Comparative analysis of three methods to generate soil hydraulic functions, Soil Tillage Res., vol. 87, no. 1, p.89–100, May (2006).

DOI: 10.1016/j.still.2005.02.034

Google Scholar

[2] H. Vereecken, Estimating the unsaturated hydraulic conductivity from theoretical models using simple soil properties, Geoderma, vol. 65, no. 1–2, p.81–92, Feb. (1995).

DOI: 10.1016/0016-7061(95)92543-x

Google Scholar

[3] R. Haverkamp, F. Bouraoui, C. Zammit, and R. A. Jarumillo, Soil Properties and Moisture Movement in the Unsaturated Zone, in The handbook of ground water engineering, J. W. Delleur, Ed. Boca Raton: CRC Press, 1999, p.170–219.

DOI: 10.1201/9781420048582.ch5

Google Scholar

[4] W. Durner and H. Fluhler, Soil Hydraulic Properties, Encyclopaedia of hydrological sciences. John Wiley & sons, p.1103–1119, (2005).

Google Scholar

[5] R. H. Brooks and A. T. Corey, Hydraulic properties of porous media, Hydrology Paper 3, vol. 196. Fort Collins, (1964).

Google Scholar

[6] M. T. van Genuchten, A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., vol. 44, no. 5, p.892–898, (1980).

DOI: 10.2136/sssaj1980.03615995004400050002x

Google Scholar

[7] K. Kosugi, Lognormal distribution model for unsaturated soil hydraulic properties, Water Resour. Res., vol. 32, no. 9, p.2697–2703, (1996).

DOI: 10.1029/96wr01776

Google Scholar

[8] B. Minasny and D. E. Hartemink, Predicting soil properties in the tropics, Earth Sci. Rev., vol. 106, p.56–62, (2011).

Google Scholar

[9] J. Tomasella, Y. Pachepsky, S. Crestana, and W. J. Rawls, Comparison of Two Techniques to Develop Pedotransfer Functions for Water Retention, Soil Sci. Soc. Am. J., vol. 67, no. 4, p.1085, Jul. (2003).

DOI: 10.2136/sssaj2003.1085

Google Scholar

[10] M. G. Hodnett and J. Tomasella, Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils, Geoderma, vol. 108, no. 3–4, p.155–180, Aug. (2002).

DOI: 10.1016/s0016-7061(02)00105-2

Google Scholar

[11] P. P. Adhikary, D. Chakraborty, N. Kalra, C. B. Sachdev, A. K. Patra, S. Kumar, R. K. Tomar, P. Chandna, D. Raghav, K. Agrawal, and M. Sehgal, Pedotransfer functions for predicting the hydraulic properties of Indian soils, Aust. J. Soil Res., vol. 46, no. 5, p.476, Aug. (2008).

DOI: 10.1071/sr07042

Google Scholar

[12] W. M. Cornelis, M. Khlosi, R. Hartmann, M. Van Meirvenne, and B. De Vos, Comparison of Unimodal Analytical Expressions for the Soil-Water Retention Curve, Soil Sci. Soc. Am. J., vol. 69, no. 6, p.1902, (2005).

DOI: 10.2136/sssaj2004.0238

Google Scholar

[13] M. van den Berg, E. Klamt, L. P. van Reeuwijk, and W. G. Sombroek, Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils, Geoderma, vol. 78, no. 3–4, p.161–180, Aug. (1997).

DOI: 10.1016/s0016-7061(97)00045-1

Google Scholar

[14] J. Tomasella and M. G. Hodnett, Estimating soil water retention characteristics from limited data in Brazilian Amazonia, Soil Sci., vol. 163, p.190–202, Mar. (1998).

DOI: 10.1097/00010694-199803000-00003

Google Scholar

[15] J. Tomasella, M. G. Hodnett, and L. Rossato, Pedotransfer Functions for the Estimation of Soil Water Retention in Brazilian Soils, Soil Sci. Soc. Am. J., vol. 64, p.327–338, (2000).

DOI: 10.2136/sssaj2000.641327x

Google Scholar

[16] M. T. van Genuchten, F. J. Leij, and S. R. Yates, The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, , U.S. Salinity Laboratory. Report EPA/600/2/2–91/065. USDA, Agricultural Research Service, Riverside, CA., Riverside, CA., (1991).

Google Scholar

[17] H. Vereecken, M. Weynants, M. Javaux, Y. Pachepsky, M. G. Schaap, and M. T. Van Genuchten, Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review, Vadose Zo. J., vol. 9, no. 4, p.795, (2010).

DOI: 10.2136/vzj2010.0045

Google Scholar

[18] M. Askari, T. Tanaka, B. I. Setiawan, and S. K. Sapto, Infiltration Characteristics of Tropical Soil Based on Water Retention Data, J. Japan Soc. Hydrol. Water Resour. Japan Soc. Hydrol. Water Resour., vol. 21, p.215–227, (2010).

DOI: 10.3178/jjshwr.21.215

Google Scholar

[19] Tessen and Yusop, Detailed soil survey of UPM farm, Puchong, Universiti Pertainyan Malaysia, Selangor, (1979).

Google Scholar

[20] L. Leon, W. Allan, D. Fylstra, L. Lasdon, J. Watson, and A. Warren, Design and use of the microsoft excel solver, Interfaces (Providence)., vol. 28, no. October, p.29–55, (1998).

DOI: 10.1287/inte.28.5.29

Google Scholar

[21] L. R. Chevalier and J. N. Yesuf, Spreadsheet Optimization for Parameter Estimation of Pressure–Saturation Equations Used for Two-Phase Groundwater Flow, Water. Air. Soil Pollut., vol. 179, no. 1–4, p.57–65, Aug. (2006).

DOI: 10.1007/s11270-006-9213-z

Google Scholar

[22] H. Aike, A New Look at the Statistical Model Identification, IEEE Trans. Automat. Contr., vol. 19, no. 6, p.716–723, (1974).

DOI: 10.1109/tac.1974.1100705

Google Scholar